forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalibrate_camera.py
94 lines (69 loc) · 3.54 KB
/
calibrate_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import cv2
from glob import iglob
import matplotlib.pyplot as plt
import numpy as np
import pickle
def get_corners(gray_image, pts_per_row, pts_per_column, flags=None):
return cv2.findChessboardCorners(gray_image, (pts_per_row, pts_per_column), flags)
def draw_image_corners(image, pts_per_row, pts_per_column, corners, ret):
cornered = cv2.drawChessboardCorners(image, (pts_per_row, pts_per_column), corners, ret)
return cornered
def get_calibration_pts(img_files_regex, pts_per_row, pts_per_column, num_channels):
# Prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((pts_per_column * pts_per_row, 3), np.float32)
objp[:,:2] = np.mgrid[0:pts_per_row, 0:pts_per_column].T.reshape(-1, 2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Make a list of calibration images
images = iglob(img_files_regex)
# Step through the list and search for chessboard corners
for idx, filename in enumerate(images, start=1):
img = cv2.imread(filename)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
ret, corners = get_corners(gray, pts_per_row, pts_per_column)
# If found, add object points, image points
if ret == True:
objpoints.append(objp)
imgpoints.append(corners)
# Draw and display the corners
img = draw_image_corners(img, pts_per_row, pts_per_column, corners, ret)
write_name = './test_out/corners_found'+str(idx)+'.jpg'
cv2.imwrite(write_name, img)
return objpoints, imgpoints
def undistort_image(image, matrix, distortion_coefficients):
return cv2.undistort(image, matrix, distortion_coefficients, None, matrix)
def get_calibration_data():
# Read in the saved camera matrix and distortion coefficients
# These are the arrays you calculated using cv2.calibrateCamera()
return pickle.load( open( "./output_images/calibration.p", "rb" ) )
if __name__ == '__main__':
img_files_regex = './camera_cal/calibration*.jpg'
pts_per_row = 9
pts_per_column = 6
num_channels = 3
objpoints, imgpoints = get_calibration_pts(img_files_regex, pts_per_row, pts_per_column, num_channels)
# Test undistortion on an image
img = cv2.imread('./camera_cal/calibration3.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_size = (img.shape[1], img.shape[0])
# Do camera calibration given object points and image points
ret, matrix, distortion_coefficients, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None)
# Save the camera calibration results
dist_pickle = {}
dist_pickle["mtx"] = matrix
dist_pickle["dist"] = distortion_coefficients
pickle.dump( dist_pickle, open( "./output_images/calibration.p", "wb" ) )
# Undistort image and save results to file
undistorted = undistort_image(img, matrix, distortion_coefficients)
undistorted_gray = cv2.cvtColor(undistorted, cv2.COLOR_BGR2GRAY)
ret, corners = get_corners(undistorted_gray, pts_per_row, pts_per_column)
undistorted = draw_image_corners(undistorted, pts_per_row, pts_per_column, corners, ret)
cv2.imwrite('test_out/test_undist.jpg', undistorted)
# Visualize distortion correction
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
ax1.imshow(img)
ax1.set_title('Original Image', fontsize=30)
ax2.imshow(undistorted)
ax2.set_title('Undistorted Image', fontsize=30)