-
Notifications
You must be signed in to change notification settings - Fork 39
/
multiplication.py
66 lines (62 loc) · 2.86 KB
/
multiplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright (c) 2012-2013, Razvan Pascanu
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy
class MulTask(object):
def __init__(self, rng, floatX):
self.rng = rng
self.floatX = floatX
self.nin = 2
self.nout = 1
self.classifType = 'lastLinear'
def generate(self, batchsize, length):
l = self.rng.randint(int(length*.1))+length
p0 = self.rng.randint(int(l*.1), size=(batchsize,))
p1 = self.rng.randint(int(l*.4), size=(batchsize,)) + int(l*.1)
data = self.rng.uniform(size=(l, batchsize, 2)).astype(self.floatX)
data[:,:,0] = 0.
data[p0, numpy.arange(batchsize), numpy.zeros((batchsize,),
dtype='int32')] = 1.
data[p1, numpy.arange(batchsize), numpy.zeros((batchsize,),
dtype='int32')] = 1.
targs = (data[p0, numpy.arange(batchsize),
numpy.ones((batchsize,), dtype='int32')] * \
data[p1, numpy.arange(batchsize),
numpy.ones((batchsize,), dtype='int32')])
return data, targs.astype(self.floatX).reshape((-1,1))
if __name__ == '__main__':
print 'Testing mul task generator ..'
multask = MulTask(numpy.random.RandomState(123), 'float32')
seq, targ = multask.generate(3, 25)
assert seq.dtype == 'float32'
assert targ.dtype == 'float32'
print 'Seq_0'
print seq[:,0,:]
print 'Targ0', targ[0]
print
print 'Seq_1'
print seq[:,1,:]
print 'Targ1', targ[1]
print
print 'Seq_2'
print seq[:,2,:]
print 'Targ2', targ[2]