-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
301 lines (273 loc) · 12.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="PARTNR: Pick and place Ambiguity Resolving by Trustworthy iNteractive leaRning">
<meta name="keywords" content="Pick and Place, Behavioral Cloning, Ambiguity, Interactive Learning">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>PARTNR</title>
<!--TODO: add Global site tag (gtag.js) - Google Analytics -->
<!-- <script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script> -->
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://kit.fontawesome.com/526bde3576.js" crossorigin="anonymous"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://eagerx.readthedocs.io/en/master/index.html">
EAGERx
</a>
</div>
</div>
</div>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">PARTNR: Pick and place Ambiguity Resolving by Trustworthy iNteractive leaRning</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://www.linkedin.com/in/jelle-luijkx">Jelle Luijkx</a>,
</span>
<span class="author-block">
<a href="https://www.linkedin.com/in/zlatanajanovic">Zlatan Ajanović</a>,
</span>
<span class="author-block">
<a href="https://r2clab.com/">Laura Ferranti</a>,
</span>
<span class="author-block">
<a href="http://jenskober.de">Jens Kober</a>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">Delft University of Technology</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2211.08304.pdf"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>PDF</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2211.08304"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<span class="link-block">
<a href="https://www.youtube.com/watch?v=q8S2Ua41Lik"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span>
<!-- Poster Link. -->
<span class="link-block">
<a href="https://partnr-learn.github.io/static/images/partnr_poster.png"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fa-solid fa-person-chalkboard"></i>
</span>
<span>Poster</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<div class="content has-text-centered">
<video id="partnr-video"
controls
muted
autoplay
loop
width="40%">
<source src="https://partnr-learn.github.io/static/videos/partnr.mp4" type="video/mp4"/>
<!-- <source src="static/videos/partnr_rescale.mp4" type="video/mp4"> -->
</video>
<p>
Evaluation of PARTNR in a table-top pick and place task.
<br>
In this setting, PARTNR improved the baseline success rate (</span class="dpartnr">CLIPort</span> variant) from 82.7% to 91.0%.
</p>
</div>
<h2 class="subtitle has-text-centered">
<span class="dpartnr">PARTNR</span> learns to solve ambiguities in pick and place problems through interactive learning.
</h2>
</div>
</div>
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Several recent works show impressive results in mapping language-based human commands and image scene observations
to direct robot executable policies (e.g., pick and place poses).
However, these approaches do not consider the uncertainty of the trained policy and simply always execute actions
suggested by the current policy as the most probable ones.
This makes them vulnerable to domain shift and inefficient in the number of required demonstrations.
</p>
<p>
We extend previous works and present the PARTNR algorithm that can detect ambiguities in the trained policy by
analyzing multiple modalities in the pick and place poses using topological analysis.
PARTNR employs an adaptive, sensitivity-based, gating function that decides if additional user demonstrations are
required.
User demonstrations are aggregated to the dataset and used for subsequent training.
In this way, the policy can adapt promptly to domain shift and it can minimize the number of required demonstrations
for a well-trained policy.
The adaptive threshold enables to achieve the user-acceptable level of ambiguity to execute the policy autonomously
and in turn, increase the trustworthiness of our system.
</p>
<p>
We demonstrate the performance of PARTNR in a table-top pick and place task.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
<!-- Paper video. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Video</h2>
<div class="publication-video">
<iframe src="https://www.youtube.com/embed/q8S2Ua41Lik?rel=0&showinfo=0"
frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
</div>
</div>
</div>
<!--/ Paper video. -->
</div>
</section>
<section class="section">
<div class="container is-max-widescreen">
<div class="rows">
<!-- PARTNR. -->
<div class="rows is-centered">
<div class="row is-full-width">
<h2 class="title is-3"><span class="dpartnr">PARTNR</span></h2>
</div>
</div>
<div class="content has-text-justified">
<p>
PARTNR is an interactive imitation learning algorithm that asks the human to take over control in case it considers
the situation to be ambiguous.
The situation is ambiguous when the learned policy does not provide a single dominant solution, i.e., there are
multiple local maxima with close values in the action space.
User demonstrations are aggregated to the dataset 𝒟 and used for subsequent training.
The robot observes, at each execution step, a human-provided natural language command and the state of the environment
(e.g., a top-view image of the table).
Based on the observation, the policy provides the heatmap, representing the value of the action.
The heatmap is then analyzed to detect multiple local maxima (in <span class="dpartnr">TopAnalysis</span>).
In this work, we rely on computational topology methods for finding local maxima, specifically we use a persistent
homology method.
Then, in <span class="dpartnr">AmbiguityMeasure</span>, the obtained corresponding values of the local maxima
<strong>T</strong>, are normalized using the <span class="dpartnr">softmax</span> function and the maximum value is
then used to decide if the situation is ambiguous.
If <span class="dpartnr">AmbiguityMeasure(<strong>T</strong>)</span> is smaller than a threshold value, the situation is ambiguous.
In case the situation is ambiguous, the robot is not executing the policy but queries the human teacher.
The threshold is updated continuously, at every step, by function <span class="dpartnr">UpdateThreshold</span>, to
satisfy a user defined sensitivity value.
Whenever there is a teacher input, the data is aggregated and the policy is updated using the function
<span class="dpartnr">Train</span>.
</p>
</div>
<img src="static/images/partnr.png" class="interpolation-image" alt="Interpolate start reference image."/>
</div>
</section>
<section class="section">
<div class="container is-max-desktop content">
<h2 class="title">Acknowledgements</h2>
<p>
This work was supported by the European Union’s H2020 project Open Deep Learning Toolkit for Robotics (OpenDR) under grant
agreement #871449 and by the ERC Stg TERI, project reference #804907.
</p>
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@inproceedings{Luijkx2022partnr,
author = {Luijkx, Jelle and Ajanovi{\'c}, Zlatan and Ferranti, Laura and Kober, Jens},
title = {{PARTNR: Pick and place Ambiguity Resolving by Trustworthy iNteractive leaRning}},
booktitle = {{5th NeurIPS Robot Learning Workshop: Trustworthy Robotics}},
year = {2022},
}
</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column">
<div class="content has-text-centered">
<p>
Website template borrowed from <a href="https://github.com/nerfies/nerfies.github.io">NeRFies</a> made by the amazing <a href="https://keunhong.com/">Keunhong Park</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>