Skip to content

Latest commit

 

History

History
58 lines (34 loc) · 1.56 KB

README.md

File metadata and controls

58 lines (34 loc) · 1.56 KB

aws

AWS repository holds all the solutions related to amazon webs services

Steps to execute the project

References: http://blog.cloudera.com/blog/2012/12/how-to-run-a-mapreduce-job-in-cdh4/

Cluster Configuration emr - 5.0.0 (Core Hadoop Cluster - Select the first option) Location : N. Virginia

Steps:

  1. Build the java code and generate the executable jar

  2. upload the jar and input file on S3

  3. Provision a cluster on AMAZON EMR

  4. ssh to master instance of EMR using hadoop@"MASTER-URL"

  5. Copy the jar from S3 to local instance aws s3 cp s3://testuseraj/jar/logprocessor-1.0.jar ./

  6. Copy the input file from S3 to local instance aws s3 cp s3://testuseraj/input/bank.txt ./

  7. create a directory in hadoop file system hadoop fs -mkdir /gaps

  8. Copy the input file into HDFS hadoop fs -put ./bank.txt /gaps

  9. Run the code hadoop jar ./logprocessor-1.0.jar com.cs.mapreduce.logprocessor.LogAnalyzer /gaps/bank.txt /gaps/output

  10. Merge the output hdfs dfs -getmerge /gaps/output/ ./out.csv

  11. Upload the out to S3 aws s3 cp ./out.csv s3://testuseraj/output/

  12. Create a manifest file to identify the text files you want to import. (Refer the file from visualization-aws folder)

  13. Upload manifest file to Amazon s3 https://s3.amazonaws.com/testuseraj/manifest.json

  14. On the Amazon QuickSight start page, choose Manage data.

  15. Create new dataset by choosing Amazon s3 icon.

  16. For DataSource name , type a name for the daa source.

  17. Upload a manifest file

18)Choose connect.

=============End of readme file==============