-
Notifications
You must be signed in to change notification settings - Fork 689
/
momentum-factor-combined-with-asset-growth-effect.py
203 lines (160 loc) · 8.75 KB
/
momentum-factor-combined-with-asset-growth-effect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# https://quantpedia.com/strategies/momentum-factor-combined-with-asset-growth-effect/
#
# The investment universe consists of NYSE, AMEX and NASDAQ stocks (data for the backtest in the source paper are from Compustat).
# Stocks with a market capitalization less than the 20th NYSE percentile (smallest stocks) are removed. The asset growth variable
# is defined as the yearly percentage change in balance sheet total assets. Data from year t-2 to t-1 are used to calculate asset
# growth, and July is the cut-off month. Every month, stocks are then sorted into deciles based on asset growth and only stocks
# with the highest asset growth are used. The next step is to sort stocks from the highest asset growth decile into quintiles,
# based on their past 11-month return (with the last month’s performance skipped in the calculation). The investor then goes long
# on stocks with the strongest momentum and short on stocks with the weakest momentum. The portfolio is equally weighted and is
# rebalanced monthly. The investor holds long-short portfolios only during February-December -> January is excluded as this month
# has been repeatedly documented as a negative month for a momentum strategy (see “January Effect Filter and Momentum in Stocks”).
#
# QC implementation changes:
# - Universe consists of 500 most liquid stocks traded on NYSE, AMEX, or NASDAQ.
from AlgorithmImports import *
class MomentumFactorAssetGrowthEffect(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# Monthly close data.
self.data = {}
self.period = 13
self.total_assets_history_period = 2
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.spy_consolidator = TradeBarConsolidator(timedelta(days=21))
self.spy_consolidator.DataConsolidated += self.CustomHandler
self.SubscriptionManager.AddConsolidator(self.symbol, self.spy_consolidator)
self.data[self.symbol] = SymbolData(self.symbol, self.period, self.total_assets_history_period)
# Warmup market history.
history = self.History(self.symbol, self.period, Resolution.Daily)
if not history.empty:
closes = history.loc[self.symbol].close
closes_len = len(closes.keys())
# Find monthly closes.
for index, time_close in enumerate(closes.iteritems()):
# index out of bounds check.
if index + 1 < closes_len:
date_month = time_close[0].date().month
next_date_month = closes.keys()[index + 1].month
# Found last day of month.
if date_month != next_date_month:
self.data[self.symbol].update(time_close[1])
self.coarse_count = 500
self.long = []
self.short = []
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.BeforeMarketClose(self.symbol), self.Selection)
def CustomHandler(self, sender, consolidated):
self.data[self.symbol].update(consolidated.Close)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(5)
def CoarseSelectionFunction(self, coarse):
if not self.selection_flag:
return Universe.Unchanged
# Update the rolling window every month.
for stock in coarse:
symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(symbol, self.period, self.total_assets_history_period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes = history.loc[symbol].close
closes_len = len(closes.keys())
# Find monthly closes.
for index, time_close in enumerate(closes.iteritems()):
# index out of bounds check.
if index + 1 < closes_len:
date_month = time_close[0].date().month
next_date_month = closes.keys()[index + 1].month
# Found last day of month.
if date_month != next_date_month:
self.data[symbol].update(time_close[1])
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths > 0 and
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
# if len(fine) > self.coarse_count:
# sorted_by_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
# top_by_market_cap = sorted_by_market_cap[:self.coarse_count]
# else:
# top_by_market_cap = fine
top_by_market_cap = fine
# Asset growth calc.
asset_growth = {}
for stock in top_by_market_cap:
symbol = stock.Symbol
if self.data[symbol].asset_data_is_ready():
asset_growth[symbol] = self.data[symbol].asset_growth()
self.data[symbol].update_assets(stock.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths)
sorted_by_growth = sorted(asset_growth.items(), key = lambda x: x[1], reverse = True)
decile = int(len(sorted_by_growth) / 10)
top_by_growth = [x[0] for x in sorted_by_growth][:decile]
performance = { x : self.data[x].performance(1) for x in top_by_growth}
sorted_by_performance = sorted(performance.items(), key = lambda x: x[1], reverse = True)
quintile = int(len(sorted_by_performance) / 5)
self.long = [x[0] for x in sorted_by_performance][:quintile]
self.short = [x[0] for x in sorted_by_performance][-quintile:]
return self.long + self.short
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.long + self.short:
self.Liquidate(symbol)
for symbol in self.long:
self.SetHoldings(symbol, 1 / len(self.long))
for symbol in self.short:
self.SetHoldings(symbol, -1 / len(self.short))
self.long.clear()
self.short.clear()
def Selection(self):
# Exclude January trading.
if self.Time.month != 12:
self.selection_flag = True
else:
self.Liquidate()
class SymbolData():
def __init__(self, symbol, period, total_assets_history_period):
self.Symbol = symbol
self.Price = RollingWindow[float](period)
self.TotalAssets = RollingWindow[float](total_assets_history_period)
def update(self, value):
self.Price.Add(value)
def update_assets(self, assets_value):
self.TotalAssets.Add(assets_value)
def asset_data_is_ready(self) -> bool:
return self.TotalAssets.IsReady
def asset_growth(self) -> float:
asset_values = [x for x in self.TotalAssets]
return (asset_values[0] - asset_values[1]) / asset_values[1]
def is_ready(self) -> bool:
return self.Price.IsReady
# Performance, one month skipped.
def performance(self, values_to_skip = 0) -> float:
closes = [x for x in self.Price][values_to_skip:]
return (closes[0] / closes[-1] - 1)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))