-
Notifications
You must be signed in to change notification settings - Fork 689
/
fed-model.py
159 lines (129 loc) · 5.38 KB
/
fed-model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# https://quantpedia.com/strategies/fed-model/
#
# Each month, the investor conducts a one-month predictive regression (using all available data up to that date) predicting excess stock market
# returns using the yield gap as an independent variable. The “Yield gap” is calculated as YG = EY − y, with earnings yield EY ≡ ln (1 ++ E/P)
# and y = ln (1 ++ Y) is the log 10 year Treasury bond yield. Then, the strategy allocates 100% in the risky asset if the forecasted excess
# returns are positive, and otherwise, it invests 100% in the risk-free rate.
from collections import deque
from AlgorithmImports import *
import numpy as np
from scipy import stats
class FEDModel(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# monthly price data and yield gap data
self.data = {}
self.period = 12 * 21
self.SetWarmUp(self.period)
self.market = self.AddEquity("SPY", Resolution.Daily).Symbol
self.market_data = deque()
self.cash = self.AddEquity("SHY", Resolution.Daily).Symbol
# risk free rate
self.risk_free_rate = self.AddData(
QuandlValue, "FRED/DGS3MO", Resolution.Daily
).Symbol
# 10Y bond yield symbol
self.bond_yield = self.AddData(
QuantpediaBondYield, "US10YT", Resolution.Daily
).Symbol
# SP500 earnings yield data
self.sp_earnings_yield = self.AddData(
QuandlValue, "MULTPL/SP500_EARNINGS_YIELD_MONTH", Resolution.Daily
).Symbol
self.yield_gap = deque()
self.recent_month = -1
def OnData(self, data):
rebalance_flag = False
if self.sp_earnings_yield in data and data[self.sp_earnings_yield]:
if self.Time.month != self.recent_month:
self.recent_month = self.Time.month
rebalance_flag = True
if not rebalance_flag:
# earnings yield data is no longer coming in
if self.Securities[self.sp_earnings_yield].GetLastData():
if (
self.Time.date()
- self.Securities[self.sp_earnings_yield].GetLastData().Time.date()
).days > 31:
self.Liquidate()
return
# pdate market price data
if (
self.market in data
and self.risk_free_rate in data
and self.bond_yield in data
):
if (
data[self.market]
and data[self.risk_free_rate]
and data[self.bond_yield]
):
market_price = data[self.market].Value
rf_rate = data[self.risk_free_rate].Value
bond_yield = data[self.bond_yield].Value
sp_ey = data[self.sp_earnings_yield].Value
if (
market_price != 0
and rf_rate != 0
and bond_yield != 0
and sp_ey != 0
):
self.market_data.append((market_price, rf_rate))
yield_gap = np.log(sp_ey) - np.log(bond_yield)
self.yield_gap.append(yield_gap)
rebalance_flag = True
# ensure minimum data points to calculate regression
min_count = 6
if len(self.market_data) >= min_count:
market_closes = np.array([x[0] for x in self.market_data])
market_returns = (market_closes[1:] - market_closes[:-1]) / market_closes[
:-1
]
rf_rates = np.array([x[1] for x in self.market_data][1:])
excess_returns = market_returns - rf_rates
yield_gaps = [x for x in self.yield_gap]
# linear regression
# Y = α + (β ∗ X)
# intercept = alpha
# slope = beta
beta, alpha, r_value, p_value, std_err = stats.linregress(
yield_gaps[1:-1], market_returns[1:]
)
X = yield_gaps[-1]
# predicted market return
Y = alpha + (beta * X)
# trade execution / rebalance
if Y > 0:
if self.Portfolio[self.cash].Invested:
self.Liquidate(self.cash)
self.SetHoldings(self.market, 1)
else:
if self.Portfolio[self.market].Invested:
self.Liquidate(self.market)
self.SetHoldings(self.cash, 1)
# Quantpedia bond yield data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaBondYield(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaBondYield()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(",")
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data["yield"] = float(split[1])
data.Value = float(split[1])
return data
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = "Value"