-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathgetRetinalLayers.m
164 lines (137 loc) · 6.26 KB
/
getRetinalLayers.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
%
% {{Caserel}}
% Copyright (C) {{2013}} {{Pangyu Teng}}
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License along
% with this program; if not, write to the Free Software Foundation, Inc.,
% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
%
function [retinalLayers, params] = getRetinalLayers(img,params)
%%
%
% Caserel - Computer-Aided SEgmentation of REtinal Layers in
% optical coherence tomography images
%
% The aim of this project, caserel`, is to build an open-source software
% suite for computer-aided segmentation and analysis of retinal layers in
% optical coherence tomography images.
%
% This project is at its infancy stage. Currently, the software supports
% segmentation of 6 retinal layers by automatically delineating 7 boundaries
% (ILM, NFL/GCL, IPL/INL, INL/OPL, OPL/ONL, IS/OS,RPE). An image
% browser/editor is provided for manual or semi-automated correction of the
% segmented retinal boundaries. The segmentation algorithms used are based
% on graph-theory and is written in Matlab. You will need Matlab to execute
% this software.
%
% `How to pronounce CASeReL? say is like casserole.
%%
%
% [retinalLayers params] = getRetinalLayers(img,params)
% identifies the boundaries between retinal layeres given an optical
% coherence tomography image, 'img'.
%
% The method for identification of these retinal layer boundaries is
% based on graph theory.
%
% $Created: 1.0 $ $Date: 2013/09/09 20:00$ $Author: Pangyu Teng $
% $Revision: 1.1 $ $Date: 2013/09/15 21:00$ $Author: Pangyu Teng $
%%
if nargin < 1
display('requires 1 input');
return;
end
%initialize constants
if nargin < 2
% resize the image if 1st value set to 'true',
% with the second value to be the scale.
params.isResize = [true 0.5];
% parameter for smothing the images.
params.filter0Params = [5 5 1];
params.filterParams = [20 20 2];
% constants used for defining the region for segmentation of individual layer
params.roughILMandISOS.shrinkScale = 0.2;
params.roughILMandISOS.offsets = -20:20;
params.ilm_0 = 4;
params.ilm_1 = 4;
params.isos_0 = 4;
params.isos_1 = 4;
params.rpe_0 = 0.05;
params.rpe_1 = 0.05;
params.inlopl_0 = 0.1; % 0.4;%
params.inlopl_1 = 0.3; % 0.5;%
params.nflgcl_0 = 0.05;% 0.01;
params.nflgcl_1 = 0.3; % 0.1;
params.iplinl_0 = 0.6;
params.iplinl_1 = 0.2;
params.oplonl_0 = 0.05;%4;
params.oplonl_1 = 0.5;%4;
% parameters for ploting
params.txtOffset = -7;
colorarr=colormap('jet');
params.colorarr=colorarr(64:-8:1,:);
% a constant (not used in this function, used in 'octSegmentationGUI.m'.)
params.smallIncre = 2;
end
%clear up matlab's mind
clear retinalLayers
%get image size
szImg = size(img);
%resize image.
if params.isResize(1)
img = imresize(img,params.isResize(2),'bilinear');
end
%smooth image with specified kernels
%for denosing
img = imfilter(img,fspecial('gaussian',params.filter0Params(1:2),params.filter0Params(3)),'replicate');
%for a very smooth image, a "broad stroke" of the image
imgSmo = imfilter(img,fspecial('gaussian',params.filterParams(1:2),params.filterParams(3)),'replicate');
% create adjacency matrices and its elements base on the image.
[params.adjMatrixW, params.adjMatrixMW, params.adjMA, params.adjMB, params.adjMW, params.adjMmW, imgNew] = getAdjacencyMatrix(img);
% % [this is not used as the moment] Create adjacency matrices and its elements based on the smoothed image.
% [params.adjMatrixWSmo, params.adjMatrixMWSmo, params.adjMA, params.adjMB, params.adjMWSmo, params.adjMmWSmo, ~] = getAdjacencyMatrix(imgSmo);
% obtain rough segmentation of the ilm and isos, then find the retinal
% layers in the order of 'retinalLayerSegmentationOrder'
%%vvvvvvvvvvvvvvvDO NOT CHANGE BELOW LINE (ORDER OF LAYERS SHALL NOT BE CHANGED)vvvvvvvvvvvvvv%%
retinalLayerSegmentationOrder = {'roughILMandISOS' 'ilm' 'isos' 'rpe' 'inlopl' 'nflgcl' 'iplinl' 'oplonl'};
%%^^^^^^^^^^^^^^^DO NOT CHANGE ABOVE LINE (ORDER OF LAYERS SHOULD NOT BE CHANGED)^^^^^^^^^^^^^%%
% segment retinal layers
retinalLayers = [];
for layerInd = 1:numel(retinalLayerSegmentationOrder)
[retinalLayers, ~] = getRetinalLayersCore(retinalLayerSegmentationOrder{layerInd},imgNew,params,retinalLayers);
end
%delete elements of the adjacency matrices prior function exit to save memory
toBeDeleted = {'adjMatrixWSmo' 'adjMatrixMWSmo' 'adjMWSmo' 'adjMmWSmo' 'adjMW' 'adjMmW' 'adjMatrixW' 'adjMatrixMW' 'adjMA' 'adjMB'};
for delInd = 1:numel(toBeDeleted)
params.(toBeDeleted{delInd}) = [];
end
% plot oct image and the obtained retinal layers.
isPlot = 1;
if isPlot,
imagesc(img);
axis image; colormap('gray'); hold on; drawnow;
layersToPlot = {'ilm' 'isos' 'rpe' 'inlopl' 'nflgcl' 'iplinl' 'oplonl'};% 'rpeSmooth'}; %
hOffset = [40 0 40 0 0 40 -40 -40]; % for displaying text
for k = 1:numel(layersToPlot)
matchedLayers = strcmpi(layersToPlot{k},{retinalLayers(:).name});
layerToPlotInd = find(matchedLayers == 1);
if ~isempty(retinalLayers(layerToPlotInd).pathX)
colora = params.colorarr(k,:);
plot(retinalLayers(layerToPlotInd).pathY,retinalLayers(layerToPlotInd).pathX-1,'--','color',colora,'linewidth',1.5);
plotInd = round(numel(retinalLayers(layerToPlotInd).pathX)/2);
text(retinalLayers(layerToPlotInd).pathY(plotInd)+hOffset(k),retinalLayers(layerToPlotInd).pathX(plotInd)+params.txtOffset,retinalLayers(layerToPlotInd).name,'color',colora,'linewidth',2);
drawnow;
end % of if ~isempty
end % of k
hold off;
end % of isPlot