diff --git a/pandas/tests/indexing/test_iloc.py b/pandas/tests/indexing/test_iloc.py index 4fae01ec710fd..476f7900dc745 100644 --- a/pandas/tests/indexing/test_iloc.py +++ b/pandas/tests/indexing/test_iloc.py @@ -706,6 +706,15 @@ def test_iloc_setitem_categorical_updates_inplace(self): expected = pd.Categorical(["C", "B", "A"]) tm.assert_categorical_equal(cat, expected) + # __setitem__ under the other hand does not work in-place + cat = pd.Categorical(["A", "B", "C"]) + df = pd.DataFrame({1: cat, 2: [1, 2, 3]}) + + df[1] = cat[::-1] + + expected = pd.Categorical(["A", "B", "C"]) + tm.assert_categorical_equal(cat, expected) + def test_iloc_with_boolean_operation(self): # GH 20627 result = DataFrame([[0, 1], [2, 3], [4, 5], [6, np.nan]]) diff --git a/pandas/tests/indexing/test_indexing.py b/pandas/tests/indexing/test_indexing.py index 5b7f013d5de31..d7b9afb552c9c 100644 --- a/pandas/tests/indexing/test_indexing.py +++ b/pandas/tests/indexing/test_indexing.py @@ -1110,3 +1110,77 @@ def test_setitem_categorical(): {"h": pd.Categorical(["m", "n"]).reorder_categories(["n", "m"])} ) tm.assert_frame_equal(df, expected) + + +def test_setitem_EA_column_update(): + # https://github.com/pandas-dev/pandas/issues/33457 + + df = pd.DataFrame( + { + "int": [1, 2, 3], + "int2": [3, 4, 5], + "float": [0.1, 0.2, 0.3], + "EA": pd.array([1, 2, None], dtype="Int64"), + } + ) + original_arr = df.EA.array + + # overwrite column with new array + df["EA"] = pd.array([1, 2, 3], dtype="Int64") + # ensure original array was not modified + assert original_arr is not df.EA.array + expected = pd.array([1, 2, None], dtype="Int64") + tm.assert_extension_array_equal(original_arr, expected) + + +def test_getitem_EA_no_copy(): + # ensure we don't copy the EA when taking a subset + + df = pd.DataFrame( + { + "int": [1, 2, 3], + "int2": [3, 4, 5], + "float": [0.1, 0.2, 0.3], + "EA": pd.array([1, 2, None], dtype="Int64"), + } + ) + original_arr = df.EA.array + subset = df[["int", "EA"]] + assert subset.EA.array is original_arr + # check that they view the same data by modifying + df["EA"].array[0] = 10 + expected = pd.array([10, 2, None], dtype="Int64") + tm.assert_extension_array_equal(subset["EA"].array, expected) + + # TODO this way it doesn't modify subset - is this expected? + # df.iloc[0, 3] = 10 + # expected = pd.array([10, 2, None], dtype="Int64") + # tm.assert_extension_array_equal(subset['EA'].array, expected) + + +def test_getitem_column_view(): + # test that getting a single column is a view on the data + + df = pd.DataFrame( + { + "int": [1, 2, 3], + "int2": [3, 4, 5], + "float": [0.1, 0.2, 0.3], + "EA": pd.array([1, 2, None], dtype="Int64"), + } + ) + + # getitem with ExtensionArray + original_arr = df._mgr.blocks[2].values + col = df["EA"] + assert col.array is original_arr + col[0] = 10 + expected = pd.array([10, 2, None], dtype="Int64") + tm.assert_extension_array_equal(df["EA"].array, expected) + + # getitem from consolidated block + col = df["int"] + with pd.option_context("chained_assignment", "warn"): + with tm.assert_produces_warning(pd.core.common.SettingWithCopyWarning): + col[0] = 10 + tm.assert_equal(df["int"], pd.Series([10, 2, 3], name="int"))