You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
importnumpyasnpimportpandasaspd# Age categories for 'with children'age_cat_w_children=pd.DataFrame(
data={
'Result': ['001', '002', '003', '004', '005', '006', '007', '008', '009', '010']
},
index=pd.IntervalIndex.from_breaks(
breaks=[-np.inf, 29, 35, 40, 45, 50, 55, 59, 65, 70, np.inf],
closed='left',
name='age',
)
)
# Age categories for 'without children'age_cat_wo_children=pd.DataFrame(
data={
'Result': ['101', '102', '103', '104', '105', '106', '107', '108']
},
index=pd.IntervalIndex.from_breaks(
breaks=[-np.inf, 29, 35, 40, 45, 50, 55, 59, np.inf],
closed='left',
name='age',
)
)
# Combine both categories into one.mapper=pd.concat(
objs=[age_cat_wo_children, age_cat_w_children],
axis=0,
keys=[False, True],
names=['children']
)
# These works, as they are supposed to.print(mapper.loc[(True, 40)])
print(mapper.loc[(False, 40)])
print(mapper.loc[[(False, 45), (False, 35)], :])
# However, these fails.print(mapper.loc[(False, 99)])
print(mapper.loc[[(False, 45), (False, 99)], :])
Issue Description
Selecting rows from MultiIndex containing IntervalIndex fails in some inconsistent cases. print(mapper.loc[(False, 99)]) gives
Traceback (most recent call last):
File "C:\ProgramData\Anaconda3\lib\code.py", line 90, in runcode
exec(code, self.locals)
File "<input>", line 1, in <module>
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py", line 961, in __getitem__
return self._getitem_tuple(key)
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py", line 1140, in _getitem_tuple
return self._getitem_lowerdim(tup)
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py", line 859, in _getitem_lowerdim
return self._handle_lowerdim_multi_index_axis0(tup)
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py", line 1160, in _handle_lowerdim_multi_index_axis0
return self._get_label(tup, axis=axis)
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py", line 1153, in _get_label
return self.obj.xs(label, axis=axis)
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py", line 3857, in xs
loc, new_index = index._get_loc_level(key, level=0)
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexes\multi.py", line 3043, in _get_loc_level
return (self._engine.get_loc(key), None)
File "pandas\_libs\index.pyx", line 777, in pandas._libs.index.BaseMultiIndexCodesEngine.get_loc
ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (2,) + inhomogeneous part.
Expected Behavior
mapper.loc[(False, 99)]
and mapper.loc[[(False, 45), (False, 99)], :]
should work.
mroeschke
changed the title
BUG: MultiIndex with IntervalIndex fails in some cases
BUG: MultiIndex with IntervalIndex level fails when indexing into interval with inf
Jul 6, 2022
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
Selecting rows from MultiIndex containing IntervalIndex fails in some inconsistent cases.
print(mapper.loc[(False, 99)])
givesExpected Behavior
mapper.loc[(False, 99)]
and
mapper.loc[[(False, 45), (False, 99)], :]
should work.
Installed Versions
INSTALLED VERSIONS
commit : 4bfe3d0
python : 3.9.7.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19042
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 12, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Danish_Denmark.1252
pandas : 1.4.2
numpy : 1.22.3
pytz : 2021.3
dateutil : 2.8.2
pip : 20.2.1
setuptools : 58.0.4
Cython : 0.29.24
pytest : 6.2.4
hypothesis : None
sphinx : 4.2.0
blosc : None
feather : None
xlsxwriter : 3.0.1
lxml.etree : 4.6.3
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.29.0
pandas_datareader: None
bs4 : 4.10.0
bottleneck : 1.3.2
brotli :
fastparquet : None
fsspec : 2021.10.1
gcsfs : None
markupsafe : 1.1.1
matplotlib : 3.5.1
numba : None
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.7.1
snappy : None
sqlalchemy : 1.4.22
tables : 3.6.1
tabulate : 0.8.9
xarray : None
xlrd : 2.0.1
xlwt : 1.3.0
zstandard : None
The text was updated successfully, but these errors were encountered: