Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: Performance regression to_csv when formatting datatime index #39413

Closed
2 of 3 tasks
StefRe opened this issue Jan 26, 2021 · 0 comments · Fixed by #44908
Closed
2 of 3 tasks

BUG: Performance regression to_csv when formatting datatime index #39413

StefRe opened this issue Jan 26, 2021 · 0 comments · Fixed by #44908
Labels
Bug Datetime Datetime data dtype IO CSV read_csv, to_csv Performance Memory or execution speed performance
Milestone

Comments

@StefRe
Copy link
Contributor

StefRe commented Jan 26, 2021

  • I have checked that this issue has not already been reported.
  • I have confirmed this bug exists on the latest version of pandas.
  • (optional) I have confirmed this bug exists on the master branch of pandas.

Code Sample, a copy-pastable example

All variants give the same output. The issue is not the different execution time of the individual variants but the performance regression of the first variant. The other variants are added just to show that nothing changed here between versions 1.1.5 and 1.2.0 (versions 1.2.1 and 1.2.0rc0 give the same results as version 1.2.0).

import pandas as pd

print(pd.__version__)

n = 100_000
df = pd.DataFrame().assign(timestamp=pd.date_range('2000',  periods=n, freq='S'), col1=1)

%timeit _ = df.set_index('timestamp').to_csv(date_format='%Y-%m-%d %H:%M:%S')
%timeit _ = df.set_index('timestamp').to_csv()
%timeit _ = df.set_index(df.timestamp.dt.strftime('%Y-%m-%d %H:%M:%S')).drop('timestamp',1).to_csv()
%timeit _ = df.to_csv(date_format='%Y-%m-%d %H:%M:%S', index=False)
%timeit _ = df.to_csv(index=False)

Problem description

Using a date_format for a datetime index in to_csv is almost 3 times slower in version 1.2.0 than in 1.1.5 (
see first row in test output: 2.39 s instead of 829 ms for 100,000 rows). For 1,000,000 rows the slowdown is 19 times.

1.1.5
829 ms ± 11.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
214 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
987 ms ± 20.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.04 s ± 5.73 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
290 ms ± 18.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

1.2.0
2.39 s ± 38 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
214 ms ± 2.19 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
992 ms ± 19.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.04 s ± 4.72 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
270 ms ± 2.67 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

This might be related to #37484.

INSTALLED VERSIONS

commit : 3e89b4c
python : 3.8.2.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en
LOCALE : de_DE.cp1252

pandas : 1.2.0
numpy : 1.19.0
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 41.2.0
Cython : 0.29.14
pytest : 5.4.1
hypothesis : None
sphinx : 2.4.4
blosc : None
feather : None
xlsxwriter : 1.2.9
lxml.etree : 4.5.0
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.13.0
pandas_datareader: None
bs4 : 4.9.1
bottleneck : 1.3.2
fsspec : 0.7.4
fastparquet : None
gcsfs : None
matplotlib : 3.3.3
numexpr : None
odfpy : None
openpyxl : 3.0.4
pandas_gbq : None
pyarrow : 0.17.0
pyxlsb : None
s3fs : None
scipy : 1.6.0
sqlalchemy : 1.3.16
tables : None
tabulate : None
xarray : 0.15.1
xlrd : 1.2.0
xlwt : None
numba : 0.50.1

@StefRe StefRe added Bug Needs Triage Issue that has not been reviewed by a pandas team member labels Jan 26, 2021
@jbrockmendel jbrockmendel added IO CSV read_csv, to_csv Performance Memory or execution speed performance labels Jun 6, 2021
@mroeschke mroeschke added Datetime Datetime data dtype and removed Needs Triage Issue that has not been reviewed by a pandas team member labels Aug 15, 2021
@jreback jreback added this to the 1.4 milestone Dec 16, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Bug Datetime Datetime data dtype IO CSV read_csv, to_csv Performance Memory or execution speed performance
Projects
None yet
Development

Successfully merging a pull request may close this issue.

4 participants