diff --git a/doc/source/whatsnew/v1.1.2.rst b/doc/source/whatsnew/v1.1.2.rst index 28ce49c11b3f0..f13d38d1f8f76 100644 --- a/doc/source/whatsnew/v1.1.2.rst +++ b/doc/source/whatsnew/v1.1.2.rst @@ -24,7 +24,7 @@ Fixed regressions - Fix regression in pickle roundtrip of the ``closed`` attribute of :class:`IntervalIndex` (:issue:`35658`) - Fixed regression in :meth:`DataFrameGroupBy.agg` where a ``ValueError: buffer source array is read-only`` would be raised when the underlying array is read-only (:issue:`36014`) - Fixed regression in :meth:`Series.groupby.rolling` number of levels of :class:`MultiIndex` in input was compressed to one (:issue:`36018`) -- +- Fixed regression in :class:`DataFrameGroupBy` on an empty :class:`DataFrame` (:issue:`36197`) .. --------------------------------------------------------------------------- diff --git a/pandas/core/window/rolling.py b/pandas/core/window/rolling.py index 0c940e5d1b82d..f7bcd1e795fd3 100644 --- a/pandas/core/window/rolling.py +++ b/pandas/core/window/rolling.py @@ -2226,10 +2226,12 @@ def _create_blocks(self, obj: FrameOrSeries): """ # Ensure the object we're rolling over is monotonically sorted relative # to the groups - groupby_order = np.concatenate( - list(self._groupby.grouper.indices.values()) - ).astype(np.int64) - obj = obj.take(groupby_order) + # GH 36197 + if not obj.empty: + groupby_order = np.concatenate( + list(self._groupby.grouper.indices.values()) + ).astype(np.int64) + obj = obj.take(groupby_order) return super()._create_blocks(obj) def _get_cython_func_type(self, func: str) -> Callable: diff --git a/pandas/tests/window/test_grouper.py b/pandas/tests/window/test_grouper.py index a46a72bde8d6d..97f3e50edf211 100644 --- a/pandas/tests/window/test_grouper.py +++ b/pandas/tests/window/test_grouper.py @@ -404,3 +404,15 @@ def test_groupby_rolling_index_changed(self, func): name="a", ) tm.assert_series_equal(result, expected) + + def test_groupby_rolling_empty_frame(self): + # GH 36197 + expected = pd.DataFrame({"s1": []}) + result = expected.groupby("s1").rolling(window=1).sum() + expected.index = pd.MultiIndex.from_tuples([], names=["s1", None]) + tm.assert_frame_equal(result, expected) + + expected = pd.DataFrame({"s1": [], "s2": []}) + result = expected.groupby(["s1", "s2"]).rolling(window=1).sum() + expected.index = pd.MultiIndex.from_tuples([], names=["s1", "s2", None]) + tm.assert_frame_equal(result, expected)