From 36c3495d9f81cf95b1e6cafd6468747367d01fd5 Mon Sep 17 00:00:00 2001 From: Andrey Kolomiets Date: Fri, 19 Jul 2024 20:48:46 +0000 Subject: [PATCH] replace some hints with literals, move slice_type to _typing.py --- pandas/_typing.py | 2 ++ pandas/core/indexes/base.py | 38 ++++++++++++------------------------- 2 files changed, 14 insertions(+), 26 deletions(-) diff --git a/pandas/_typing.py b/pandas/_typing.py index 09a3f58d6ab7f..d43e6e900546d 100644 --- a/pandas/_typing.py +++ b/pandas/_typing.py @@ -526,3 +526,5 @@ def closed(self) -> bool: # maintaine the sub-type of any hashable sequence SequenceT = TypeVar("SequenceT", bound=Sequence[Hashable]) + +SliceType = Optional[Hashable] diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py index 66395c74d90f0..7a25ec7f6135c 100644 --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -11,8 +11,6 @@ ClassVar, Literal, NoReturn, - Optional, - Union, cast, final, overload, @@ -47,6 +45,7 @@ ArrayLike, Axes, Axis, + AxisInt, DropKeep, Dtype, DtypeObj, @@ -60,6 +59,7 @@ ReindexMethod, Self, Shape, + SliceType, npt, ) from pandas.compat.numpy import function as nv @@ -158,8 +158,6 @@ ExtensionArray, TimedeltaArray, ) -from pandas.core.arrays.floating import FloatingDtype -from pandas.core.arrays.integer import IntegerDtype from pandas.core.arrays.string_ import ( StringArray, StringDtype, @@ -317,20 +315,6 @@ def _new_Index(cls, d): return cls.__new__(cls, **d) -slice_type = Optional[ - Union[ - str, - IntegerDtype, - FloatingDtype, - DatetimeTZDtype, - CategoricalDtype, - PeriodDtype, - IntervalDtype, - abc.Hashable, - ] -] - - class Index(IndexOpsMixin, PandasObject): """ Immutable sequence used for indexing and alignment. @@ -6413,7 +6397,7 @@ def _transform_index(self, func, *, level=None) -> Index: items = [func(x) for x in self] return Index(items, name=self.name, tupleize_cols=False) - def isin(self, values, level: np.str_ | int | None = None) -> npt.NDArray[np.bool_]: + def isin(self, values, level: str_t | int | None = None) -> npt.NDArray[np.bool_]: """ Return a boolean array where the index values are in `values`. @@ -6713,8 +6697,8 @@ def get_slice_bound(self, label, side: Literal["left", "right"]) -> int: def slice_locs( self, - start: slice_type = None, - end: slice_type = None, + start: SliceType = None, + end: SliceType = None, step: int | None = None, ) -> tuple[int, int]: """ @@ -6810,7 +6794,9 @@ def slice_locs( return start_slice, end_slice - def delete(self, loc: int | np.integer | list[int] | npt.NDArray[np.int_]) -> Self: + def delete( + self, loc: int | np.integer | list[int] | npt.NDArray[np.integer] + ) -> Self: """ Make new Index with passed location(-s) deleted. @@ -7257,7 +7243,7 @@ def _maybe_disable_logical_methods(self, opname: str_t) -> None: @Appender(IndexOpsMixin.argmin.__doc__) def argmin( - self, axis: int | None = None, skipna: bool = True, *args, **kwargs + self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs ) -> int: nv.validate_argmin(args, kwargs) nv.validate_minmax_axis(axis) @@ -7272,7 +7258,7 @@ def argmin( @Appender(IndexOpsMixin.argmax.__doc__) def argmax( - self, axis: int | None = None, skipna: bool = True, *args, **kwargs + self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs ) -> int: nv.validate_argmax(args, kwargs) nv.validate_minmax_axis(axis) @@ -7284,7 +7270,7 @@ def argmax( raise ValueError("Encountered all NA values") return super().argmax(skipna=skipna) - def min(self, axis: int | None = None, skipna: bool = True, *args, **kwargs): + def min(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs): """ Return the minimum value of the Index. @@ -7347,7 +7333,7 @@ def min(self, axis: int | None = None, skipna: bool = True, *args, **kwargs): return nanops.nanmin(self._values, skipna=skipna) - def max(self, axis: int | None = None, skipna: bool = True, *args, **kwargs): + def max(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs): """ Return the maximum value of the Index.