diff --git a/pandas/_typing.py b/pandas/_typing.py index 09a3f58d6ab7f..d43e6e900546d 100644 --- a/pandas/_typing.py +++ b/pandas/_typing.py @@ -526,3 +526,5 @@ def closed(self) -> bool: # maintaine the sub-type of any hashable sequence SequenceT = TypeVar("SequenceT", bound=Sequence[Hashable]) + +SliceType = Optional[Hashable] diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py index 5bffac5fa64b6..b187e578a252b 100644 --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -45,7 +45,9 @@ ArrayLike, Axes, Axis, + AxisInt, DropKeep, + Dtype, DtypeObj, F, IgnoreRaise, @@ -57,6 +59,7 @@ ReindexMethod, Self, Shape, + SliceType, npt, ) from pandas.compat.numpy import function as nv @@ -1087,7 +1090,7 @@ def view(self, cls=None): result._id = self._id return result - def astype(self, dtype, copy: bool = True): + def astype(self, dtype: Dtype, copy: bool = True): """ Create an Index with values cast to dtypes. @@ -2957,7 +2960,7 @@ def _dti_setop_align_tzs(self, other: Index, setop: str_t) -> tuple[Index, Index return self, other @final - def union(self, other, sort=None): + def union(self, other, sort: bool | None = None): """ Form the union of two Index objects. @@ -3334,7 +3337,7 @@ def _intersection_via_get_indexer( return result @final - def difference(self, other, sort=None): + def difference(self, other, sort: bool | None = None): """ Return a new Index with elements of index not in `other`. @@ -3420,7 +3423,12 @@ def _wrap_difference_result(self, other, result): # We will override for MultiIndex to handle empty results return self._wrap_setop_result(other, result) - def symmetric_difference(self, other, result_name=None, sort=None): + def symmetric_difference( + self, + other, + result_name: abc.Hashable | None = None, + sort: bool | None = None, + ): """ Compute the symmetric difference of two Index objects. @@ -6389,7 +6397,7 @@ def _transform_index(self, func, *, level=None) -> Index: items = [func(x) for x in self] return Index(items, name=self.name, tupleize_cols=False) - def isin(self, values, level=None) -> npt.NDArray[np.bool_]: + def isin(self, values, level: str_t | int | None = None) -> npt.NDArray[np.bool_]: """ Return a boolean array where the index values are in `values`. @@ -6687,7 +6695,12 @@ def get_slice_bound(self, label, side: Literal["left", "right"]) -> int: else: return slc - def slice_locs(self, start=None, end=None, step=None) -> tuple[int, int]: + def slice_locs( + self, + start: SliceType = None, + end: SliceType = None, + step: int | None = None, + ) -> tuple[int, int]: """ Compute slice locations for input labels. @@ -6781,7 +6794,9 @@ def slice_locs(self, start=None, end=None, step=None) -> tuple[int, int]: return start_slice, end_slice - def delete(self, loc) -> Self: + def delete( + self, loc: int | np.integer | list[int] | npt.NDArray[np.integer] + ) -> Self: """ Make new Index with passed location(-s) deleted. @@ -7227,7 +7242,9 @@ def _maybe_disable_logical_methods(self, opname: str_t) -> None: raise TypeError(f"cannot perform {opname} with {type(self).__name__}") @Appender(IndexOpsMixin.argmin.__doc__) - def argmin(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: + def argmin( + self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs + ) -> int: nv.validate_argmin(args, kwargs) nv.validate_minmax_axis(axis) @@ -7240,7 +7257,9 @@ def argmin(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: return super().argmin(skipna=skipna) @Appender(IndexOpsMixin.argmax.__doc__) - def argmax(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: + def argmax( + self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs + ) -> int: nv.validate_argmax(args, kwargs) nv.validate_minmax_axis(axis) @@ -7251,7 +7270,7 @@ def argmax(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: raise ValueError("Encountered all NA values") return super().argmax(skipna=skipna) - def min(self, axis=None, skipna: bool = True, *args, **kwargs): + def min(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs): """ Return the minimum value of the Index. @@ -7314,7 +7333,7 @@ def min(self, axis=None, skipna: bool = True, *args, **kwargs): return nanops.nanmin(self._values, skipna=skipna) - def max(self, axis=None, skipna: bool = True, *args, **kwargs): + def max(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs): """ Return the maximum value of the Index.