-
-
Notifications
You must be signed in to change notification settings - Fork 18k
/
readers.py
2153 lines (1904 loc) · 76.5 KB
/
readers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Module contains tools for processing files into DataFrames or other objects
GH#48849 provides a convenient way of deprecating keyword arguments
"""
from __future__ import annotations
from collections import abc
import csv
import sys
from textwrap import fill
from typing import (
IO,
TYPE_CHECKING,
Any,
Callable,
Hashable,
Literal,
Mapping,
NamedTuple,
Sequence,
TypedDict,
overload,
)
import warnings
import numpy as np
from pandas._libs import lib
from pandas._libs.parsers import STR_NA_VALUES
from pandas.errors import (
AbstractMethodError,
ParserWarning,
)
from pandas.util._decorators import Appender
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import check_dtype_backend
from pandas.core.dtypes.common import (
is_file_like,
is_float,
is_integer,
is_list_like,
)
from pandas.core.frame import DataFrame
from pandas.core.indexes.api import RangeIndex
from pandas.core.shared_docs import _shared_docs
from pandas.io.common import (
IOHandles,
get_handle,
stringify_path,
validate_header_arg,
)
from pandas.io.parsers.arrow_parser_wrapper import ArrowParserWrapper
from pandas.io.parsers.base_parser import (
ParserBase,
is_index_col,
parser_defaults,
)
from pandas.io.parsers.c_parser_wrapper import CParserWrapper
from pandas.io.parsers.python_parser import (
FixedWidthFieldParser,
PythonParser,
)
if TYPE_CHECKING:
from types import TracebackType
from pandas._typing import (
CompressionOptions,
CSVEngine,
DtypeArg,
DtypeBackend,
FilePath,
HashableT,
IndexLabel,
ReadCsvBuffer,
StorageOptions,
)
_doc_read_csv_and_table = (
r"""
{summary}
Also supports optionally iterating or breaking of the file
into chunks.
Additional help can be found in the online docs for
`IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.
Parameters
----------
filepath_or_buffer : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts any ``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method, such as
a file handle (e.g. via builtin ``open`` function) or ``StringIO``.
sep : str, default {_default_sep}
Delimiter to use. If sep is None, the C engine cannot automatically detect
the separator, but the Python parsing engine can, meaning the latter will
be used and automatically detect the separator from only the first valid
row of the file by Python's builtin sniffer tool, ``csv.Sniffer``.
In addition, separators longer than 1 character and different from
``'\s+'`` will be interpreted as regular expressions and will also force
the use of the Python parsing engine. Note that regex delimiters are prone
to ignoring quoted data. Regex example: ``'\r\t'``.
delimiter : str, default ``None``
Alias for sep.
header : int, list of int, None, default 'infer'
Row number(s) to use as the column names, and the start of the
data. Default behavior is to infer the column names: if no names
are passed the behavior is identical to ``header=0`` and column
names are inferred from the first line of the file, if column
names are passed explicitly then the behavior is identical to
``header=None``. Explicitly pass ``header=0`` to be able to
replace existing names. The header can be a list of integers that
specify row locations for a multi-index on the columns
e.g. [0,1,3]. Intervening rows that are not specified will be
skipped (e.g. 2 in this example is skipped). Note that this
parameter ignores commented lines and empty lines if
``skip_blank_lines=True``, so ``header=0`` denotes the first line of
data rather than the first line of the file.
names : array-like, optional
List of column names to use. If the file contains a header row,
then you should explicitly pass ``header=0`` to override the column names.
Duplicates in this list are not allowed.
index_col : int, str, sequence of int / str, or False, optional, default ``None``
Column(s) to use as the row labels of the ``DataFrame``, either given as
string name or column index. If a sequence of int / str is given, a
MultiIndex is used.
Note: ``index_col=False`` can be used to force pandas to *not* use the first
column as the index, e.g. when you have a malformed file with delimiters at
the end of each line.
usecols : list-like or callable, optional
Return a subset of the columns. If list-like, all elements must either
be positional (i.e. integer indices into the document columns) or strings
that correspond to column names provided either by the user in `names` or
inferred from the document header row(s). If ``names`` are given, the document
header row(s) are not taken into account. For example, a valid list-like
`usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.
Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
To instantiate a DataFrame from ``data`` with element order preserved use
``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns
in ``['foo', 'bar']`` order or
``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
for ``['bar', 'foo']`` order.
If callable, the callable function will be evaluated against the column
names, returning names where the callable function evaluates to True. An
example of a valid callable argument would be ``lambda x: x.upper() in
['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
parsing time and lower memory usage.
dtype : Type name or dict of column -> type, optional
Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32,
'c': 'Int64'}}
Use `str` or `object` together with suitable `na_values` settings
to preserve and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion.
.. versionadded:: 1.5.0
Support for defaultdict was added. Specify a defaultdict as input where
the default determines the dtype of the columns which are not explicitly
listed.
engine : {{'c', 'python', 'pyarrow'}}, optional
Parser engine to use. The C and pyarrow engines are faster, while the python engine
is currently more feature-complete. Multithreading is currently only supported by
the pyarrow engine.
.. versionadded:: 1.4.0
The "pyarrow" engine was added as an *experimental* engine, and some features
are unsupported, or may not work correctly, with this engine.
converters : dict, optional
Dict of functions for converting values in certain columns. Keys can either
be integers or column labels.
true_values : list, optional
Values to consider as True in addition to case-insensitive variants of "True".
false_values : list, optional
Values to consider as False in addition to case-insensitive variants of "False".
skipinitialspace : bool, default False
Skip spaces after delimiter.
skiprows : list-like, int or callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (int)
at the start of the file.
If callable, the callable function will be evaluated against the row
indices, returning True if the row should be skipped and False otherwise.
An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
skipfooter : int, default 0
Number of lines at bottom of file to skip (Unsupported with engine='c').
nrows : int, optional
Number of rows of file to read. Useful for reading pieces of large files.
na_values : scalar, str, list-like, or dict, optional
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted as
NaN: '"""
+ fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ")
+ """'.
keep_default_na : bool, default True
Whether or not to include the default NaN values when parsing the data.
Depending on whether `na_values` is passed in, the behavior is as follows:
* If `keep_default_na` is True, and `na_values` are specified, `na_values`
is appended to the default NaN values used for parsing.
* If `keep_default_na` is True, and `na_values` are not specified, only
the default NaN values are used for parsing.
* If `keep_default_na` is False, and `na_values` are specified, only
the NaN values specified `na_values` are used for parsing.
* If `keep_default_na` is False, and `na_values` are not specified, no
strings will be parsed as NaN.
Note that if `na_filter` is passed in as False, the `keep_default_na` and
`na_values` parameters will be ignored.
na_filter : bool, default True
Detect missing value markers (empty strings and the value of na_values). In
data without any NAs, passing na_filter=False can improve the performance
of reading a large file.
verbose : bool, default False
Indicate number of NA values placed in non-numeric columns.
skip_blank_lines : bool, default True
If True, skip over blank lines rather than interpreting as NaN values.
parse_dates : bool or list of int or names or list of lists or dict, \
default False
The behavior is as follows:
* boolean. If True -> try parsing the index.
* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
each as a separate date column.
* list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
a single date column.
* dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call
result 'foo'
If a column or index cannot be represented as an array of datetimes,
say because of an unparsable value or a mixture of timezones, the column
or index will be returned unaltered as an object data type. For
non-standard datetime parsing, use ``pd.to_datetime`` after
``pd.read_csv``.
Note: A fast-path exists for iso8601-formatted dates.
infer_datetime_format : bool, default False
If True and `parse_dates` is enabled, pandas will attempt to infer the
format of the datetime strings in the columns, and if it can be inferred,
switch to a faster method of parsing them. In some cases this can increase
the parsing speed by 5-10x.
.. deprecated:: 2.0.0
A strict version of this argument is now the default, passing it has no effect.
keep_date_col : bool, default False
If True and `parse_dates` specifies combining multiple columns then
keep the original columns.
date_parser : function, optional
Function to use for converting a sequence of string columns to an array of
datetime instances. The default uses ``dateutil.parser.parser`` to do the
conversion. Pandas will try to call `date_parser` in three different ways,
advancing to the next if an exception occurs: 1) Pass one or more arrays
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
string values from the columns defined by `parse_dates` into a single array
and pass that; and 3) call `date_parser` once for each row using one or
more strings (corresponding to the columns defined by `parse_dates`) as
arguments.
.. deprecated:: 2.0.0
Use ``date_format`` instead, or read in as ``object`` and then apply
:func:`to_datetime` as-needed.
date_format : str or dict of column -> format, default ``None``
If used in conjunction with ``parse_dates``, will parse dates according to this
format. For anything more complex,
please read in as ``object`` and then apply :func:`to_datetime` as-needed.
.. versionadded:: 2.0.0
dayfirst : bool, default False
DD/MM format dates, international and European format.
cache_dates : bool, default True
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets.
iterator : bool, default False
Return TextFileReader object for iteration or getting chunks with
``get_chunk()``.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
chunksize : int, optional
Return TextFileReader object for iteration.
See the `IO Tools docs
<https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
for more information on ``iterator`` and ``chunksize``.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
{decompression_options}
.. versionchanged:: 1.4.0 Zstandard support.
thousands : str, optional
Thousands separator.
decimal : str, default '.'
Character to recognize as decimal point (e.g. use ',' for European data).
lineterminator : str (length 1), optional
Character to break file into lines. Only valid with C parser.
quotechar : str (length 1), optional
The character used to denote the start and end of a quoted item. Quoted
items can include the delimiter and it will be ignored.
quoting : int or csv.QUOTE_* instance, default 0
Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).
doublequote : bool, default ``True``
When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate
whether or not to interpret two consecutive quotechar elements INSIDE a
field as a single ``quotechar`` element.
escapechar : str (length 1), optional
One-character string used to escape other characters.
comment : str, optional
Indicates remainder of line should not be parsed. If found at the beginning
of a line, the line will be ignored altogether. This parameter must be a
single character. Like empty lines (as long as ``skip_blank_lines=True``),
fully commented lines are ignored by the parameter `header` but not by
`skiprows`. For example, if ``comment='#'``, parsing
``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in 'a,b,c' being
treated as the header.
encoding : str, optional, default "utf-8"
Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python
standard encodings
<https://docs.python.org/3/library/codecs.html#standard-encodings>`_ .
.. versionchanged:: 1.2
When ``encoding`` is ``None``, ``errors="replace"`` is passed to
``open()``. Otherwise, ``errors="strict"`` is passed to ``open()``.
This behavior was previously only the case for ``engine="python"``.
.. versionchanged:: 1.3.0
``encoding_errors`` is a new argument. ``encoding`` has no longer an
influence on how encoding errors are handled.
encoding_errors : str, optional, default "strict"
How encoding errors are treated. `List of possible values
<https://docs.python.org/3/library/codecs.html#error-handlers>`_ .
.. versionadded:: 1.3.0
dialect : str or csv.Dialect, optional
If provided, this parameter will override values (default or not) for the
following parameters: `delimiter`, `doublequote`, `escapechar`,
`skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.
on_bad_lines : {{'error', 'warn', 'skip'}} or callable, default 'error'
Specifies what to do upon encountering a bad line (a line with too many fields).
Allowed values are :
- 'error', raise an Exception when a bad line is encountered.
- 'warn', raise a warning when a bad line is encountered and skip that line.
- 'skip', skip bad lines without raising or warning when they are encountered.
.. versionadded:: 1.3.0
.. versionadded:: 1.4.0
- callable, function with signature
``(bad_line: list[str]) -> list[str] | None`` that will process a single
bad line. ``bad_line`` is a list of strings split by the ``sep``.
If the function returns ``None``, the bad line will be ignored.
If the function returns a new list of strings with more elements than
expected, a ``ParserWarning`` will be emitted while dropping extra elements.
Only supported when ``engine="python"``
delim_whitespace : bool, default False
Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be
used as the sep. Equivalent to setting ``sep='\\s+'``. If this option
is set to True, nothing should be passed in for the ``delimiter``
parameter.
low_memory : bool, default True
Internally process the file in chunks, resulting in lower memory use
while parsing, but possibly mixed type inference. To ensure no mixed
types either set False, or specify the type with the `dtype` parameter.
Note that the entire file is read into a single DataFrame regardless,
use the `chunksize` or `iterator` parameter to return the data in chunks.
(Only valid with C parser).
memory_map : bool, default False
If a filepath is provided for `filepath_or_buffer`, map the file object
directly onto memory and access the data directly from there. Using this
option can improve performance because there is no longer any I/O overhead.
float_precision : str, optional
Specifies which converter the C engine should use for floating-point
values. The options are ``None`` or 'high' for the ordinary converter,
'legacy' for the original lower precision pandas converter, and
'round_trip' for the round-trip converter.
.. versionchanged:: 1.2
{storage_options}
.. versionadded:: 1.2
dtype_backend : {{"numpy_nullable", "pyarrow"}}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
implementation when "numpy_nullable" is set, pyarrow is used for all
dtypes if "pyarrow" is set.
The dtype_backends are still experimential.
.. versionadded:: 2.0
Returns
-------
DataFrame or TextFileReader
A comma-separated values (csv) file is returned as two-dimensional
data structure with labeled axes.
See Also
--------
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
Examples
--------
>>> pd.{func_name}('data.csv') # doctest: +SKIP
"""
)
class _C_Parser_Defaults(TypedDict):
delim_whitespace: Literal[False]
na_filter: Literal[True]
low_memory: Literal[True]
memory_map: Literal[False]
float_precision: None
_c_parser_defaults: _C_Parser_Defaults = {
"delim_whitespace": False,
"na_filter": True,
"low_memory": True,
"memory_map": False,
"float_precision": None,
}
class _Fwf_Defaults(TypedDict):
colspecs: Literal["infer"]
infer_nrows: Literal[100]
widths: None
_fwf_defaults: _Fwf_Defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None}
_c_unsupported = {"skipfooter"}
_python_unsupported = {"low_memory", "float_precision"}
_pyarrow_unsupported = {
"skipfooter",
"float_precision",
"chunksize",
"comment",
"nrows",
"thousands",
"memory_map",
"dialect",
"on_bad_lines",
"delim_whitespace",
"quoting",
"lineterminator",
"converters",
"iterator",
"dayfirst",
"verbose",
"skipinitialspace",
"low_memory",
}
class _DeprecationConfig(NamedTuple):
default_value: Any
msg: str | None
@overload
def validate_integer(name: str, val: None, min_val: int = ...) -> None:
...
@overload
def validate_integer(name: str, val: float, min_val: int = ...) -> int:
...
@overload
def validate_integer(name: str, val: int | None, min_val: int = ...) -> int | None:
...
def validate_integer(
name: str, val: int | float | None, min_val: int = 0
) -> int | None:
"""
Checks whether the 'name' parameter for parsing is either
an integer OR float that can SAFELY be cast to an integer
without losing accuracy. Raises a ValueError if that is
not the case.
Parameters
----------
name : str
Parameter name (used for error reporting)
val : int or float
The value to check
min_val : int
Minimum allowed value (val < min_val will result in a ValueError)
"""
if val is None:
return val
msg = f"'{name:s}' must be an integer >={min_val:d}"
if is_float(val):
if int(val) != val:
raise ValueError(msg)
val = int(val)
elif not (is_integer(val) and val >= min_val):
raise ValueError(msg)
return int(val)
def _validate_names(names: Sequence[Hashable] | None) -> None:
"""
Raise ValueError if the `names` parameter contains duplicates or has an
invalid data type.
Parameters
----------
names : array-like or None
An array containing a list of the names used for the output DataFrame.
Raises
------
ValueError
If names are not unique or are not ordered (e.g. set).
"""
if names is not None:
if len(names) != len(set(names)):
raise ValueError("Duplicate names are not allowed.")
if not (
is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView)
):
raise ValueError("Names should be an ordered collection.")
def _read(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], kwds
) -> DataFrame | TextFileReader:
"""Generic reader of line files."""
# if we pass a date_parser and parse_dates=False, we should not parse the
# dates GH#44366
if kwds.get("parse_dates", None) is None:
if (
kwds.get("date_parser", lib.no_default) is lib.no_default
and kwds.get("date_format", None) is None
):
kwds["parse_dates"] = False
else:
kwds["parse_dates"] = True
# Extract some of the arguments (pass chunksize on).
iterator = kwds.get("iterator", False)
chunksize = kwds.get("chunksize", None)
if kwds.get("engine") == "pyarrow":
if iterator:
raise ValueError(
"The 'iterator' option is not supported with the 'pyarrow' engine"
)
if chunksize is not None:
raise ValueError(
"The 'chunksize' option is not supported with the 'pyarrow' engine"
)
else:
chunksize = validate_integer("chunksize", chunksize, 1)
nrows = kwds.get("nrows", None)
# Check for duplicates in names.
_validate_names(kwds.get("names", None))
# Create the parser.
parser = TextFileReader(filepath_or_buffer, **kwds)
if chunksize or iterator:
return parser
with parser:
return parser.read(nrows)
# iterator=True -> TextFileReader
@overload
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols: list[HashableT] | Callable[[Hashable], bool] | None = ...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters: Mapping[Hashable, Callable] | None = ...,
true_values: list | None = ...,
false_values: list | None = ...,
skipinitialspace: bool = ...,
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] | None = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser: Callable | lib.NoDefault = ...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: Literal[True],
chunksize: int | None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory: bool = ...,
memory_map: bool = ...,
float_precision: Literal["high", "legacy"] | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
...
# chunksize=int -> TextFileReader
@overload
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols: list[HashableT] | Callable[[Hashable], bool] | None = ...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters: Mapping[Hashable, Callable] | None = ...,
true_values: list | None = ...,
false_values: list | None = ...,
skipinitialspace: bool = ...,
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] | None = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser: Callable | lib.NoDefault = ...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: bool = ...,
chunksize: int,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory: bool = ...,
memory_map: bool = ...,
float_precision: Literal["high", "legacy"] | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
...
# default case -> DataFrame
@overload
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols: list[HashableT] | Callable[[Hashable], bool] | None = ...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters: Mapping[Hashable, Callable] | None = ...,
true_values: list | None = ...,
false_values: list | None = ...,
skipinitialspace: bool = ...,
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] | None = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser: Callable | lib.NoDefault = ...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: Literal[False] = ...,
chunksize: None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory: bool = ...,
memory_map: bool = ...,
float_precision: Literal["high", "legacy"] | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame:
...
# Unions -> DataFrame | TextFileReader
@overload
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols: list[HashableT] | Callable[[Hashable], bool] | None = ...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters: Mapping[Hashable, Callable] | None = ...,
true_values: list | None = ...,
false_values: list | None = ...,
skipinitialspace: bool = ...,
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] | None = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser: Callable | lib.NoDefault = ...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: bool = ...,
chunksize: int | None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory: bool = ...,
memory_map: bool = ...,
float_precision: Literal["high", "legacy"] | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame | TextFileReader:
...
@Appender(
_doc_read_csv_and_table.format(
func_name="read_csv",
summary="Read a comma-separated values (csv) file into DataFrame.",
_default_sep="','",
storage_options=_shared_docs["storage_options"],
decompression_options=_shared_docs["decompression_options"]
% "filepath_or_buffer",
)
)
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = lib.no_default,
delimiter: str | None | lib.NoDefault = None,
# Column and Index Locations and Names
header: int | Sequence[int] | None | Literal["infer"] = "infer",
names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default,
index_col: IndexLabel | Literal[False] | None = None,
usecols: list[HashableT] | Callable[[Hashable], bool] | None = None,
# General Parsing Configuration
dtype: DtypeArg | None = None,
engine: CSVEngine | None = None,
converters: Mapping[Hashable, Callable] | None = None,
true_values: list | None = None,
false_values: list | None = None,
skipinitialspace: bool = False,
skiprows: list[int] | int | Callable[[Hashable], bool] | None = None,
skipfooter: int = 0,
nrows: int | None = None,
# NA and Missing Data Handling
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = None,
keep_default_na: bool = True,
na_filter: bool = True,
verbose: bool = False,
skip_blank_lines: bool = True,
# Datetime Handling
parse_dates: bool | Sequence[Hashable] | None = None,
infer_datetime_format: bool | lib.NoDefault = lib.no_default,
keep_date_col: bool = False,
date_parser: Callable | lib.NoDefault = lib.no_default,
date_format: str | None = None,
dayfirst: bool = False,
cache_dates: bool = True,
# Iteration
iterator: bool = False,
chunksize: int | None = None,
# Quoting, Compression, and File Format
compression: CompressionOptions = "infer",
thousands: str | None = None,
decimal: str = ".",
lineterminator: str | None = None,
quotechar: str = '"',
quoting: int = csv.QUOTE_MINIMAL,
doublequote: bool = True,
escapechar: str | None = None,
comment: str | None = None,
encoding: str | None = None,
encoding_errors: str | None = "strict",
dialect: str | csv.Dialect | None = None,
# Error Handling
on_bad_lines: str = "error",
# Internal
delim_whitespace: bool = False,
low_memory: bool = _c_parser_defaults["low_memory"],
memory_map: bool = False,
float_precision: Literal["high", "legacy"] | None = None,
storage_options: StorageOptions = None,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame | TextFileReader:
if infer_datetime_format is not lib.no_default:
warnings.warn(
"The argument 'infer_datetime_format' is deprecated and will "
"be removed in a future version. "
"A strict version of it is now the default, see "
"https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. "
"You can safely remove this argument.",
FutureWarning,
stacklevel=find_stack_level(),
)
# locals() should never be modified
kwds = locals().copy()
del kwds["filepath_or_buffer"]
del kwds["sep"]
kwds_defaults = _refine_defaults_read(
dialect,
delimiter,
delim_whitespace,
engine,
sep,
on_bad_lines,
names,
defaults={"delimiter": ","},
dtype_backend=dtype_backend,
)
kwds.update(kwds_defaults)
return _read(filepath_or_buffer, kwds)
# iterator=True -> TextFileReader
@overload
def read_table(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols: list[HashableT] | Callable[[Hashable], bool] | None = ...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters: Mapping[Hashable, Callable] | None = ...,
true_values: list | None = ...,
false_values: list | None = ...,
skipinitialspace: bool = ...,
skiprows: list[int] | int | Callable[[Hashable], bool] | None = ...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = ...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser: Callable | lib.NoDefault = ...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: Literal[True],
chunksize: int | None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory: bool = ...,
memory_map: bool = ...,
float_precision: str | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
...
# chunksize=int -> TextFileReader
@overload
def read_table(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,