forked from biothings/biothings_explorer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_queries.http
590 lines (524 loc) · 16.4 KB
/
test_queries.http
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# Switch to local, dev or prod environment
# local: localhost:3000
# dev: dev.api.bte.ncats.io
# prod: api.bte.ncats.io
###
GET {{base_url}}/metakg
###
GET {{base_url}}/v1/predicates
####
GET {{base_url}}/v1/meta_knowledge_graph
####
GET {{base_url}}/v1/team/Textmining%20Provider/meta_knowledge_graph
###
GET {{base_url}}/v1/smartapi/<smartapi_id>/meta_knowledge_graph
# note: CX uses the dev ARS instance, since it seems the most reliable. Queries can be submitted to https://ars-dev.transltr.io/ars/api/submit
# there is also a CI ARS instance.
#registered BTE API endpoint in ARS
https://ars.ci.transltr.io/ara-bte/api/
###
# all registered Actors in ARS
https://ars.ci.transltr.io/ars/api/actors
###
# Explain with two-intermediate nodes
# One of the "results" (a complete path) should have these nodes:
# - n0 (started with the ID): SmallMolecule is CHEBI:41423 (aka celecoxib aka PUBCHEM.COMPOUND:2662)
# - n1: Disease is MONDO:0002974 (aka cervical cancer)
# - n2: Pathway is REACT:R-HSA-109704 (aka PI3K Cascade)
# - n3 (started with the ID): Gene is NCBIGene:117145 (aka THEM4 aka HGNC:17947)
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"nodes": {
"n0": {
"ids":["PUBCHEM.COMPOUND:2662"],
"categories":["biolink:SmallMolecule"]
},
"n1": {
"categories":["biolink:Disease"]
},
"n2": {
"categories":["biolink:Pathway"]
},
"n3": {
"categories":["biolink:Gene"],
"ids":["HGNC:17947"]
}
},
"edges": {
"e0": {
"subject": "n0",
"object": "n1"
},
"e1": {
"subject": "n1",
"object": "n2"
},
"e2": {
"subject": "n2",
"object": "n3"
}
}
}
}
}
###
# Predict one-hop with predicate filtering
# One of the "results" (a complete path) should have these nodes:
# - n00 (started with the ID): SmallMolecule is CHEBI:8863 (aka RILUZOLE aka CHEMBL.COMPOUND:CHEMBL744)
# - n01: Gene is NCBIGene:5670 (aka PSG2)
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"edges": {
"e00": {
"object": "n01",
"subject": "n00",
"predicates": ["biolink:physically_interacts_with"]
}
},
"nodes": {
"n00": {
"categories": ["biolink:SmallMolecule"],
"ids": ["CHEMBL.COMPOUND:CHEMBL744"]
},
"n01": {
"categories": ["biolink:Gene"]
}
}
}
}
}
###
# Predict one-hop with node semantic type expansion
# This query takes > 20 seconds to run...
# One of the "results" (a complete path) should have these nodes:
# - n0 (started with the ID): Disease is MONDO:0005015 (aka diabetes mellitus (disease))
# - n3: Disease is MONDO:0009874 (aka Rabson-Mendenhall syndrome)
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"nodes": {
"n0": {
"categories": ["biolink:DiseaseOrPhenotypicFeature"],
"ids": ["MONDO:0005015"]
},
"n3": {
"categories": ["biolink:DiseaseOrPhenotypicFeature"]
}
},
"edges": {
"e03": {
"subject": "n0",
"object": "n3"
}
}
}
}
}
####
# Predict one-hop BUT NO semantic category for the ID AND predicate filtering
# BTE should correctly figure out that the ID corresponds to the Gene semantic type
# note that "name" field on query nodes should be ignored
# DEFUNCT: this used to return answers, but it now doesn't - this is related to Automat and Biolink v2.1
# 1. the data was under ChemicalSubstance but BTE has moved to Biolink v2.1 (no more ChemicalSubstance).
# Now it's not clear if using SmallMolecule will retrieve the same data.
# 2. Automat is only retrieving data when queried in specific directions (related to "canonical predicate directions")
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"nodes": {
"n0": {
"categories": ["biolink:SmallMolecule"],
"name": "some chemical"
},
"n1": {
"name": "EGFR",
"ids": ["NCBIGene:1956"]
}
},
"edges": {
"e0": {
"subject": "n0",
"object": "n1",
"predicates": [
"biolink:decreases_abundance_of",
"biolink:decreases_activity_of",
"biolink:decreases_expression_of",
"biolink:decreases_synthesis_of",
"biolink:increases_degradation_of",
"biolink:disrupts",
"biolink:entity_negatively_regulates_entity"
]
}
}
}
}
}
####
# Explain with no intermediate nodes
# DEFUNCT: This query returns empty knowledge_graph, results. This is expected because
# 1. querying Disease OMIM:606703 -> Gene only gets a different gene (NCBIGene:111)
# 2. querying Gene NCBIGene:1956 -> Disease gets a bunch of Disease IDs, but "OMIM:606703" isn't in the response json
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"nodes": {
"n0": {
"ids": ["OMIM:606703"],
"categories": ["biolink:Disease"]
},
"n1": {
"categories": ["biolink:Gene"],
"ids": ["NCBIGene:1956"]
}
},
"edges": {
"e01": {
"subject": "n0",
"object": "n1"
}
}
}
}
}
####
###
# Predict one-hop
# One of the "results" (a complete path) should have these nodes connected with an edge with the predicate "homologous_to"
# - n0 (started with the ID): Gene is NCBIGene:1017 (aka CDK2)
# - n1: Gene is MGI:104772
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"nodes": {
"n0": {
"ids": ["NCBIGene:1017"],
"categories": ["biolink:Gene"]
},
"n1": {
"categories": ["biolink:Gene"]
}
},
"edges": {
"e0": {
"subject": "n0",
"object": "n1",
"predicates": [
"biolink:homologous_to",
"biolink:orthologous_to"
]
}
}
}
}
}
####
# Predict one-hop (depends on Automat APIs)
# One of the "results" (a complete path) should have these nodes:
# - n0 (started with the ID): Gene is NCBIGene:6658 (aka SOX3)
# - n1: GeneFamily is HGNC.FAMILY:757
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"nodes": {
"n0": {
"ids": ["NCBIGene:6658"],
"categories": ["biolink:Gene"]
},
"n1": {
"categories":["biolink:GeneFamily"]
}
},
"edges": {
"e0": {
"subject": "n0",
"object": "n1"
}
}
}
}
}
###
# https://github.com/NCATSTranslator/minihackathons/issues/160
####
# Predict one-hop BUT NO semantic category for the ID AND predicate filtering
# BTE should correctly figure out that the ID corresponds to the Protein semantic category
# note that "name" field on query nodes should be ignored
# this query should use the "Text Mining Targeted Association API" since it currently has PR IDs (Protein semantic type)
# One of the "results" (a complete path) should have these nodes:
# - n0 (started with the ID): Protein is PR:000006933 (no ID resolution, so no name or equivalent IDs in node attributes)
# - n1: SmallMolecule is CHEBI:28748 (aka DOXORUBICIN)
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"edges": {
"e0": {
"object": "n1",
"predicates": [
"biolink:negatively_regulates_entity_to_entity",
"biolink:entity_negatively_regulates_entity"
],
"subject": "n0"
}
},
"nodes": {
"n0": {
"categories": ["biolink:SmallMolecule"],
"name": "some chemical"
},
"n1": {
"ids": ["PR:000006933"],
"name": "EGFR"
}
}
}
}
}
###
# https://github.com/NCATSTranslator/minihackathons/issues/157
# DON'T USE THIS QUERY for most tests, since it will take a long time to run AND BTE has some bugs related to this:
# Predict one-hop BUT have multiple starting nodes/IDs, with predicate filtering, node semantic type expansion
# Designed to retrieve information from "clinical KPs"
# The issues / bugs:
# - querying with MONDO:0005359 AND/OR MESH:D056487 AND/OR NCIT:C26991 in n0 leads to an empty knowledge_graph/results.
# This is because there are no associations/edges with those predicates
# - querying with only SNOMEDCT:197358007 in n0 leads to some associations/edges from Columbia Open Health Data (COHD).
# However, BTE incorrectly identifies the node with SNOMEDCT:197358007 as a Drug.
# it's actually a Disease; the ID has the label "Toxic liver disease with acute hepatitis"
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"edges": {
"e1": {
"object": "n1",
"predicates": [
"biolink:has_normalized_google_distance_with",
"biolink:correlated_with"
],
"subject": "n0"
}
},
"nodes": {
"n0": {
"ids": [
"MONDO:0005359",
"SNOMEDCT:197358007",
"MESH:D056487",
"NCIT:C26991"
]
},
"n1": {
"categories": ["biolink:DiseaseOrPhenotypicFeature"]
}
}
}
}
}
###
# https://github.com/NCATSTranslator/testing/issues/91
# Predict one-hop with node semantic expansion (the same node has the ID...)
# One of the "results" (a complete path) should have these nodes:
# - n0 (started with the ID): Disease is UMLS:C0042963 (aka HP:0002013 aka Vomiting)
# - n1: SmallMolecule is CHEBI:94848 (aka DIMENHYDRINATE)
# - e0: the edge should have the predicate treated_by and be from MyChem.info
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"nodes": {
"n0": {
"ids": [
"HP:0002013"
],
"categories": [
"biolink:DiseaseOrPhenotypicFeature"
]
},
"n1": {
"categories":[
"biolink:SmallMolecule"
]
}
},
"edges": {
"e0": {
"subject": "n0",
"object": "n1",
"predicates":["biolink:related_to"]
}
}
}
}
}
###
# Predict one-hop
# DEFUNCT: This query is not working because of how this API's x-bte operations are set up (clinical risk kp api)
# - There is a lack of clarity around how the data is represented (and therefore how to query it)
# - this has to do with the predicate directionality, and what counts as the SUBJECT and OBJECT
# - see https://ncatstranslator.slack.com/archives/C022EL8D3AB/p1624480395075900 for the thread on this issue
# Ryan: https://ncatstranslator.slack.com/archives/C022EL8D3AB/p1627338809084200
POST {{base_url}}/v1/smartapi/d86a24f6027ffe778f84ba10a7a1861a/query
Content-Type: application/json
{
"message": {
"query_graph": {
"edges": {
"e00": {
"subject": "n00",
"object": "n01",
"predicates": ["biolink:related_to"]
}
},
"nodes": {
"n00": {
"categories": ["biolink:SmallMolecule"]
},
"n01": {
"categories": ["biolink:Disease"],
"ids": ["MONDO:0005301"]
}
}
}
}
}
###
# Predict one-hop
# DEFUNCT: This query is not working because the less-constrained node n1 has no ID or category.
# https://github.com/NCATSTranslator/minihackathons/issues/139
# POST {{base_url}}/v1/query
POST https://ars.transltr.io/ars/api/submit
Content-Type: application/json
{
"message": {
"query_graph": {
"edges": {
"e01": {
"object": "n0",
"predicates": [
"biolink:entity_negatively_regulates_entity",
"biolink:negatively_regulates_entity_to_entity"
],
"subject": "n1"
}
},
"nodes": {
"n0": {
"categories": ["biolink:Gene"],
"ids": ["NCBIGene:23221"]
},
"n1": {}
}
}
}
}
###
# Predict one-hop
# DEFUNCT: This query is not working because the less-constrained node n1 has no ID or category.
# https://github.com/NCATSTranslator/minihackathons/issues/142
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"edges": {
"e01": {
"object": "n0",
"subject": "n1"
}
},
"nodes": {
"n0": {
"categories": ["biolink:Gene"],
"ids": ["NCBIGene:23221"]
},
"n1": {}
}
}
}
}
###
# https://github.com/NCATSTranslator/minihackathons/issues/142
####
# Predict one-hop BUT NO semantic category for the ID AND predicate filtering AND node semantic expansion
# DEFUNCT: this query has never returned answers with BTE
# - it's designed to use the Clinical Risk KP API (which BTE does query),
# but that KP API doesn't have records with this MONDO ID
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"edges": {
"e0": {
"object": "n1",
"predicates": [
"biolink:correlated_with"
],
"subject": "n0"
}
},
"nodes": {
"n0": {
"ids": ["MONDO:0005359"],
"name": "drug-induced liver injury"
},
"n1": {
"categories": ["biolink:DiseaseOrPhenotypicFeature"],
"name": "Disease Or Phenotypic Feature"
}
}
}
}
}
###
POST {{base_url}}/v1/query
Content-Type: application/json
{
"message": {
"query_graph": {
"nodes": {
"n0": {
"ids": ["WIKIPATHWAYS:WP195"],
"categories": ["biolink:Pathway"]
},
"n1": {
"ids": ["NCBIGene:3556"],
"categories": ["biolink:Gene"]
},
"n2": {
"categories": ["biolink:SmallMolecule"]
}
},
"edges": {
"e01": {
"subject": "n0",
"object": "n1"
},
"e02": {
"subject": "n1",
"object": "n2"
}
}
}
}
}