-
Notifications
You must be signed in to change notification settings - Fork 367
/
Copy pathauxil.c
946 lines (771 loc) · 28.3 KB
/
auxil.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
#include "osqp.h" // For OSQP rho update
#include "auxil.h"
#include "proj.h"
#include "lin_alg.h"
#include "constants.h"
#include "scaling.h"
#include "util.h"
/***********************************************************
* Auxiliary functions needed to compute ADMM iterations * *
***********************************************************/
#if EMBEDDED != 1
c_float compute_rho_estimate(OSQPWorkspace * work){
c_int n, m; // Dimensions
c_float pri_res, dua_res; // Primal and dual residuals
c_float pri_res_norm, dua_res_norm; // Normalization for the residuals
c_float temp_res_norm; // Temporary residual norm
c_float rho_estimate; // Rho estimate value
// Get problem dimensions
n = work->data->n;
m = work->data->m;
// Get primal and dual residuals
pri_res = vec_norm_inf(work->z_prev, m);
dua_res = vec_norm_inf(work->x_prev, n);
// Normalize primal residual
pri_res_norm = vec_norm_inf(work->z, m); // ||z||
temp_res_norm = vec_norm_inf(work->Ax, m); // ||Ax||
pri_res_norm = c_max(pri_res_norm, temp_res_norm); // max (||z||,||Ax||)
pri_res /= (pri_res_norm + 1e-10); // Normalize primal residual (prevent 0 division)
// Normalize dual residual
dua_res_norm = vec_norm_inf(work->data->q, n); // ||q||
temp_res_norm = vec_norm_inf(work->Aty, n); // ||A' y||
dua_res_norm = c_max(dua_res_norm, temp_res_norm);
temp_res_norm = vec_norm_inf(work->Px, n); // ||P x||
dua_res_norm = c_max(dua_res_norm, temp_res_norm); // max(||q||,||A' y||,||P x||)
dua_res /= (dua_res_norm + 1e-10); // Normalize dual residual (prevent 0 division)
// Return rho estimate
rho_estimate = work->settings->rho * c_sqrt(pri_res / (dua_res + 1e-10)); // (prevent 0 division)
rho_estimate = c_min(c_max(rho_estimate, RHO_MIN), RHO_MAX); // Constrain rho values
// DEBUG: Print stuff
// c_print("current rho = %.2e\n", work->settings->rho);
// c_print("pri_res = %.2e, dua_res = %.2e\n", pri_res, dua_res);
// c_print("new rho = %.2e\n", rho_estimate);
return rho_estimate;
}
c_int adapt_rho(OSQPWorkspace * work){
c_int exitflag; // Exitflag
c_float rho_new; // New rho value
exitflag = 0; // Initialize exitflag to 0
// Compute new rho
rho_new = compute_rho_estimate(work);
// Set rho estimate in info
work->info->rho_estimate = rho_new;
// Check if the new rho is large or small enough and update it in case
if (rho_new > work->settings->rho * ADAPTIVE_RHO_TOLERANCE ||
rho_new < work->settings->rho / ADAPTIVE_RHO_TOLERANCE){
exitflag = osqp_update_rho(work, rho_new);
work->info->rho_updates += 1;
}
return exitflag;
}
void set_rho_vec(OSQPWorkspace * work){
c_int i;
work->settings->rho = c_min(c_max(work->settings->rho, RHO_MIN), RHO_MAX);
for(i=0; i < work->data->m; i++){
if ( (work->data->l[i] < -OSQP_INFTY*MIN_SCALING) && (work->data->u[i] > OSQP_INFTY*MIN_SCALING) ) {
// Loose bounds
work->constr_type[i] = -1;
work->rho_vec[i] = RHO_MIN;
} else if (work->data->u[i] - work->data->l[i] < RHO_TOL) {
// Equality constraints
work->constr_type[i] = 1;
work->rho_vec[i] = RHO_EQ_OVER_RHO_INEQ * work->settings->rho;
} else {
// Inequality constraints
work->constr_type[i] = 0;
work->rho_vec[i] = work->settings->rho;
}
work->rho_inv_vec[i] = 1. / work->rho_vec[i];
}
}
c_int update_rho_vec(OSQPWorkspace * work){
c_int i, exitflag, constr_type_changed;
exitflag = 0;
constr_type_changed = 0;
for(i=0; i < work->data->m; i++){
if ( (work->data->l[i] < -OSQP_INFTY*MIN_SCALING) && (work->data->u[i] > OSQP_INFTY*MIN_SCALING) ) {
// Loose bounds
if (work->constr_type[i] != -1){
work->constr_type[i] = -1;
work->rho_vec[i] = RHO_MIN;
work->rho_inv_vec[i] = 1. / RHO_MIN;
constr_type_changed = 1;
}
} else if (work->data->u[i] - work->data->l[i] < RHO_TOL) {
// Equality constraints
if (work->constr_type[i] != 1){
work->constr_type[i] = 1;
work->rho_vec[i] = RHO_EQ_OVER_RHO_INEQ * work->settings->rho;
work->rho_inv_vec[i] = 1. / work->rho_vec[i];
constr_type_changed = 1;
}
} else {
// Inequality constraints
if (work->constr_type[i] != 0){
work->constr_type[i] = 0;
work->rho_vec[i] = work->settings->rho;
work->rho_inv_vec[i] = 1. / work->settings->rho;
constr_type_changed = 1;
}
}
}
// Update rho_vec in KKT matrix if constraints type has changed
if (constr_type_changed == 1) {
exitflag = work->linsys_solver->update_rho_vec(work->linsys_solver,
work->rho_vec,
work->data->m);
}
return exitflag;
}
#endif // EMBEDDED != 1
void swap_vectors(c_float ** a, c_float ** b){
c_float * temp;
temp = *b;
*b = *a;
*a = temp;
}
void cold_start(OSQPWorkspace *work) {
vec_set_scalar(work->x, 0., work->data->n);
vec_set_scalar(work->z, 0., work->data->m);
vec_set_scalar(work->y, 0., work->data->m);
}
static void compute_rhs(OSQPWorkspace *work){
c_int i; // Index
for (i=0; i < work->data->n; i++){
// Cycle over part related to x variables
work->xz_tilde[i] = work->settings->sigma * work->x_prev[i] - work->data->q[i];
}
for (i = 0; i < work->data->m; i++){
// Cycle over dual variable in the first step (nu)
work->xz_tilde[i + work->data->n] = work->z_prev[i] - work->rho_inv_vec[i] * work->y[i];
}
}
static void update_z_tilde(OSQPWorkspace *work){
c_int i; // Index
for (i = 0; i < work->data->m; i++){
work->xz_tilde[i + work->data->n] = work->z_prev[i] + work->rho_inv_vec[i] * (work->xz_tilde[i + work->data->n] - work->y[i]);
}
}
void update_xz_tilde(OSQPWorkspace * work){
// Compute right-hand side
compute_rhs(work);
// Solve linear system
work->linsys_solver->solve(work->linsys_solver, work->xz_tilde, work->settings);
// Update z_tilde variable after solving linear system
update_z_tilde(work);
}
void update_x(OSQPWorkspace * work){
c_int i;
// update x
for (i = 0; i < work->data->n; i++){
work->x[i] = work->settings->alpha * work->xz_tilde[i] +
((c_float) 1.0 - work->settings->alpha) * work->x_prev[i];
}
// update delta_x
for (i = 0; i < work->data->n; i++){
work->delta_x[i] = work->x[i] - work->x_prev[i];
}
}
void update_z(OSQPWorkspace *work){
c_int i;
// update z
for (i = 0; i < work->data->m; i++){
work->z[i] = work->settings->alpha * work->xz_tilde[i + work->data->n] +
((c_float) 1.0 - work->settings->alpha) * work->z_prev[i] +
work->rho_inv_vec[i] * work->y[i];
}
// project z
project(work, work->z);
}
void update_y(OSQPWorkspace *work){
c_int i; // Index
for (i = 0; i < work->data->m; i++){
work->delta_y[i] = work->rho_vec[i] *
(work->settings->alpha * work->xz_tilde[i + work->data->n] +
((c_float) 1.0 - work->settings->alpha) * work->z_prev[i] - work->z[i]);
work->y[i] += work->delta_y[i];
}
}
c_float compute_obj_val(OSQPWorkspace *work, c_float * x) {
c_float obj_val;
obj_val = quad_form(work->data->P, x) +
vec_prod(work->data->q, x, work->data->n);
if (work->settings->scaling){
obj_val *= work->scaling->cinv;
}
return obj_val;
}
c_float compute_pri_res(OSQPWorkspace * work, c_float * x, c_float * z){
// NB: Use z_prev as working vector
// pr = Ax - z
mat_vec(work->data->A, x, work->Ax, 0); // Ax
vec_add_scaled(work->z_prev, work->Ax, z, work->data->m, -1);
// If scaling active -> rescale residual
if (work->settings->scaling && !work->settings->scaled_termination){
return vec_scaled_norm_inf(work->scaling->Einv, work->z_prev, work->data->m);
}
// Return norm of the residual
return vec_norm_inf(work->z_prev, work->data->m);
}
c_float compute_pri_tol(OSQPWorkspace * work, c_float eps_abs, c_float eps_rel){
c_float max_rel_eps, temp_rel_eps;
// max_rel_eps = max(||z||, ||A x||)
if (work->settings->scaling && !work->settings->scaled_termination){
// ||Einv * z||
max_rel_eps = vec_scaled_norm_inf(work->scaling->Einv, work->z, work->data->m);
// ||Einv * A * x||
temp_rel_eps = vec_scaled_norm_inf(work->scaling->Einv, work->Ax, work->data->m);
// Choose maximum
max_rel_eps = c_max(max_rel_eps, temp_rel_eps);
} else { // No unscaling required
// ||z||
max_rel_eps = vec_norm_inf(work->z, work->data->m);
// ||A * x||
temp_rel_eps = vec_norm_inf(work->Ax, work->data->m);
// Choose maximum
max_rel_eps = c_max(max_rel_eps, temp_rel_eps);
}
// eps_prim
return eps_abs + eps_rel * max_rel_eps;
}
c_float compute_dua_res(OSQPWorkspace * work, c_float * x, c_float * y){
// NB: Use x_prev as temporary vector
// NB: Only upper triangular part of P is stored.
// dr = q + A'*y + P*x
// dr = q
prea_vec_copy(work->data->q, work->x_prev, work->data->n);
// P * x (upper triangular part)
mat_vec(work->data->P, x, work->Px, 0);
// P' * x (lower triangular part with no diagonal)
mat_tpose_vec(work->data->P, x, work->Px, 1, 1);
// dr += P * x (full P matrix)
vec_add_scaled(work->x_prev, work->x_prev, work->Px, work->data->n, 1);
// dr += A' * y
if (work->data->m > 0){
mat_tpose_vec(work->data->A, y, work->Aty, 0, 0);
vec_add_scaled(work->x_prev, work->x_prev, work->Aty, work->data->n, 1);
}
// If scaling active -> rescale residual
if (work->settings->scaling && !work->settings->scaled_termination){
return work->scaling->cinv * vec_scaled_norm_inf(work->scaling->Dinv, work->x_prev, work->data->n);
}
return vec_norm_inf(work->x_prev, work->data->n);
}
c_float compute_dua_tol(OSQPWorkspace * work, c_float eps_abs, c_float eps_rel){
c_float max_rel_eps, temp_rel_eps;
// max_rel_eps = max(||q||, ||A' y|, ||P x||)
if (work->settings->scaling && !work->settings->scaled_termination){
// || Dinv q||
max_rel_eps = vec_scaled_norm_inf(work->scaling->Dinv, work->data->q, work->data->n);
// || Dinv A' y ||
temp_rel_eps = vec_scaled_norm_inf(work->scaling->Dinv, work->Aty, work->data->n);
max_rel_eps = c_max(max_rel_eps, temp_rel_eps);
// || Dinv P x||
temp_rel_eps = vec_scaled_norm_inf(work->scaling->Dinv, work->Px, work->data->n);
max_rel_eps = c_max(max_rel_eps, temp_rel_eps);
// Multiply by cinv
max_rel_eps *= work->scaling->cinv;
} else { // No scaling required
// ||q||
max_rel_eps = vec_norm_inf(work->data->q, work->data->n);
// ||A'*y||
temp_rel_eps = vec_norm_inf(work->Aty, work->data->n);
max_rel_eps = c_max(max_rel_eps, temp_rel_eps);
// ||P*x||
temp_rel_eps = vec_norm_inf(work->Px, work->data->n);
max_rel_eps = c_max(max_rel_eps, temp_rel_eps);
}
// eps_dual
return eps_abs + eps_rel * max_rel_eps;
}
c_int is_primal_infeasible(OSQPWorkspace * work, c_float eps_prim_inf){
// This function checks for the primal infeasibility termination criteria.
//
// 1) A' * delta_y < eps * ||delta_y||
//
// 2) u'*max(delta_y, 0) + l'*min(delta_y, 0) < -eps * ||delta_y||
//
c_int i; // Index for loops
c_float norm_delta_y;
c_float ineq_lhs;
// Compute infinity norm of delta_y
if (work->settings->scaling && !work->settings->scaled_termination){ // Unscale if necessary
// Use work->Adelta_x as temporary vector
vec_ew_prod(work->scaling->E, work->delta_y, work->Adelta_x, work->data->m);
norm_delta_y = vec_norm_inf(work->Adelta_x, work->data->m);
} else{
norm_delta_y = vec_norm_inf(work->delta_y, work->data->m);
}
if (norm_delta_y > eps_prim_inf){ // ||delta_y|| > 0
ineq_lhs = 0;
for (i = 0; i < work->data->m; i++){
ineq_lhs += work->data->u[i] * c_max(work->delta_y[i], 0) + \
work->data->l[i] * c_min(work->delta_y[i], 0);
}
// Check if the condition is satisfied: ineq_lhs < -eps
if (ineq_lhs < -eps_prim_inf * norm_delta_y ){
// Compute and return ||A'delta_y|| < eps_prim_inf
mat_tpose_vec(work->data->A, work->delta_y, work->Atdelta_y, 0, 0);
if (work->settings->scaling && !work->settings->scaled_termination){ // Unscale if necessary
vec_ew_prod(work->scaling->Dinv, work->Atdelta_y, work->Atdelta_y, work->data->n);
}
return vec_norm_inf(work->Atdelta_y, work->data->n) < eps_prim_inf * norm_delta_y;
}
}
// Conditions not satisfied -> not primal infeasible
return 0;
}
c_int is_dual_infeasible(OSQPWorkspace * work, c_float eps_dual_inf){
// This function checks for the scaled dual infeasibility termination criteria.
//
// 1) q * delta_x < - eps * || delta_x ||
//
// 2) ||P * delta_x || < eps * || delta_x ||
//
// 3) -> (A * delta_x)_i > -eps * || delta_x ||, l_i != -inf
// -> (A * delta_x)_i < eps * || delta_x ||, u_i != inf
//
c_int i; // Index for loops
c_float norm_delta_x;
c_float cost_scaling;
// Compute norm of delta_x
if (work->settings->scaling && !work->settings->scaled_termination){ // Unscale if necessary
norm_delta_x = vec_scaled_norm_inf(work->scaling->D, work->delta_x, work->data->n);
cost_scaling = work->scaling->c;
} else{
norm_delta_x = vec_norm_inf(work->delta_x, work->data->n);
cost_scaling = 1.0;
}
// Prevent 0 division || delta_x || > 0
if (norm_delta_x > eps_dual_inf){
// Normalize delta_x by its norm
/* vec_mult_scalar(work->delta_x, 1./norm_delta_x, work->data->n); */
// Check first if q'*delta_x < 0
if (vec_prod(work->data->q, work->delta_x, work->data->n) <
- cost_scaling * eps_dual_inf * norm_delta_x){
// Compute product P * delta_x (NB: P is store in upper triangular form)
mat_vec(work->data->P, work->delta_x, work->Pdelta_x, 0);
mat_tpose_vec(work->data->P, work->delta_x, work->Pdelta_x, 1, 1);
// Scale if necessary
if (work->settings->scaling && !work->settings->scaled_termination){
vec_ew_prod(work->scaling->Dinv, work->Pdelta_x, work->Pdelta_x, work->data->n);
}
// Check if || P * delta_x || = 0
if (vec_norm_inf(work->Pdelta_x, work->data->n) <
cost_scaling * eps_dual_inf * norm_delta_x){
// Compute A * delta_x
mat_vec(work->data->A, work->delta_x, work->Adelta_x, 0);
// Scale if necessary
if (work->settings->scaling && !work->settings->scaled_termination){
vec_ew_prod(work->scaling->Einv, work->Adelta_x, work->Adelta_x, work->data->m);
}
// De Morgan Law Applied to dual infeasibility conditions for A * x
// NB: Note that 1e-06 is used to adjust the infinity value
// in case the problem is scaled.
for (i = 0; i < work->data->m; i++){
if (((work->data->u[i] < OSQP_INFTY*MIN_SCALING) && (work->Adelta_x[i] > eps_dual_inf * norm_delta_x)) ||
((work->data->l[i] > -OSQP_INFTY*MIN_SCALING) && (work->Adelta_x[i] < -eps_dual_inf * norm_delta_x))){
// At least one condition not satisfied -> not dual infeasible
return 0;
}
}
// All conditions passed -> dual infeasible
return 1;
}
}
}
// Conditions not satisfied -> not dual infeasible
return 0;
}
void store_solution(OSQPWorkspace *work) {
#ifndef EMBEDDED
c_float norm_vec;
#endif
if ((work->info->status_val != OSQP_PRIMAL_INFEASIBLE) &&
(work->info->status_val != OSQP_PRIMAL_INFEASIBLE_INACCURATE) &&
(work->info->status_val != OSQP_DUAL_INFEASIBLE) &&
(work->info->status_val != OSQP_DUAL_INFEASIBLE_INACCURATE)){
prea_vec_copy(work->x, work->solution->x, work->data->n); // primal
prea_vec_copy(work->y, work->solution->y, work->data->m); // dual
if(work->settings->scaling) // Unscale solution if scaling has been performed
unscale_solution(work);
} else { // Problem primal or dual infeasible. Solution is NaN
vec_set_scalar(work->solution->x, OSQP_NAN, work->data->n);
vec_set_scalar(work->solution->y, OSQP_NAN, work->data->m);
#ifndef EMBEDDED
// Normalize infeasibility certificates if embedded is off
// NB: It requires a division
if ((work->info->status_val != OSQP_PRIMAL_INFEASIBLE) ||
((work->info->status_val != OSQP_PRIMAL_INFEASIBLE_INACCURATE))){
norm_vec = vec_norm_inf(work->delta_y, work->data->m);
vec_mult_scalar(work->delta_y, 1./norm_vec, work->data->m);
}
if ((work->info->status_val != OSQP_DUAL_INFEASIBLE) ||
((work->info->status_val != OSQP_DUAL_INFEASIBLE_INACCURATE))){
norm_vec = vec_norm_inf(work->delta_x, work->data->n);
vec_mult_scalar(work->delta_x, 1./norm_vec, work->data->n);
}
#endif
// Cold start iterates to 0 for next runs
cold_start(work);
}
}
void update_info(OSQPWorkspace *work, c_int iter, c_int compute_objective, c_int polish){
c_float * x, * z, * y; // Allocate pointers to variables
c_float * obj_val, * pri_res, *dua_res; // objective value, residuals
#ifdef PROFILING
c_float *run_time; // Execution time
#endif
#ifndef EMBEDDED
if (polish){
x = work->pol->x;
y = work->pol->y;
z = work->pol->z;
obj_val = &work->pol->obj_val;
pri_res = &work->pol->pri_res;
dua_res = &work->pol->dua_res;
#ifdef PROFILING
run_time = &work->info->polish_time;
#endif
} else {
#endif // EMBEDDED
x = work->x;
y = work->y;
z = work->z;
obj_val = &work->info->obj_val;
pri_res = &work->info->pri_res;
dua_res = &work->info->dua_res;
work->info->iter = iter; // Update iteration number
#ifdef PROFILING
run_time = &work->info->solve_time;
#endif
#ifndef EMBEDDED
}
#endif
// Compute the objective if needed
if (compute_objective){
*obj_val = compute_obj_val(work, x);
}
// Compute primal residual
if (work->data->m == 0) {
// No constraints -> Always primal feasible
*pri_res = 0.;
} else {
*pri_res = compute_pri_res(work, x, z);
}
// Compute dual residual
*dua_res = compute_dua_res(work, x, y);
// Update timing
#ifdef PROFILING
*run_time = toc(work->timer);
#endif
#ifdef PRINTING
work->summary_printed = 0; // The just updated info have not been printed
#endif
}
void reset_info(OSQPInfo *info){
#ifdef PROFILING
// Initialize info values.
info->solve_time = 0.0; // Solve time to zero
#ifndef EMBEDDED
info->polish_time = 0.0; // Polish time to zero
#endif
// NB: We do not reset the setup_time because it is performed only once
#endif
update_status(info, OSQP_UNSOLVED); // Problem is unsolved
#if EMBEDDED != 1
info->rho_updates = 0; // Rho updates are now 0
#endif
}
void update_status(OSQPInfo *info, c_int status_val) {
// Update status value
info->status_val = status_val;
// Update status string depending on status val
if(status_val == OSQP_SOLVED)
c_strcpy(info->status, "solved");
if(status_val == OSQP_SOLVED_INACCURATE)
c_strcpy(info->status, "solved inaccurate");
else if (status_val == OSQP_PRIMAL_INFEASIBLE)
c_strcpy(info->status, "primal infeasible");
else if (status_val == OSQP_PRIMAL_INFEASIBLE_INACCURATE)
c_strcpy(info->status, "primal infeasible inaccurate");
else if (status_val == OSQP_UNSOLVED)
c_strcpy(info->status, "unsolved");
else if (status_val == OSQP_DUAL_INFEASIBLE)
c_strcpy(info->status, "dual infeasible");
else if (status_val == OSQP_DUAL_INFEASIBLE_INACCURATE)
c_strcpy(info->status, "dual infeasible inaccurate");
else if (status_val == OSQP_MAX_ITER_REACHED)
c_strcpy(info->status, "maximum iterations reached");
else if (status_val == OSQP_SIGINT)
c_strcpy(info->status, "interrupted");
}
c_int check_termination(OSQPWorkspace *work, c_int approximate){
c_float eps_prim, eps_dual, eps_prim_inf, eps_dual_inf;
c_int exitflag;
c_int prim_res_check, dual_res_check, prim_inf_check, dual_inf_check;
c_float eps_abs, eps_rel;
// Initialize variables to 0
exitflag = 0;
prim_res_check = 0; dual_res_check = 0;
prim_inf_check = 0; dual_inf_check = 0;
// Initialize tolerances
eps_abs = work->settings->eps_abs;
eps_rel = work->settings->eps_rel;
eps_prim_inf = work->settings->eps_prim_inf;
eps_dual_inf = work->settings->eps_dual_inf;
// If approximate solution required, increase tolerances by 10
if (approximate){
eps_abs *= 10;
eps_rel *= 10;
eps_prim_inf *= 10;
eps_dual_inf *= 10;
}
// Check residuals
if (work->data->m == 0){
prim_res_check = 1; // No contraints -> Primal feasibility always satisfied
}
else {
// Compute primal tolerance
eps_prim = compute_pri_tol(work, eps_abs, eps_rel);
// Primal feasibility check
if (work->info->pri_res < eps_prim) {
prim_res_check = 1;
} else {
// Primal infeasibility check
prim_inf_check = is_primal_infeasible(work, eps_prim_inf);
}
} // End check if m == 0
// Compute dual tolerance
eps_dual = compute_dua_tol(work, eps_abs, eps_rel);
// Dual feasibility check
if (work->info->dua_res < eps_dual) {
dual_res_check = 1;
} else {
// Check dual infeasibility
dual_inf_check = is_dual_infeasible(work, eps_dual_inf);
}
// Compare checks to determine solver status
if (prim_res_check && dual_res_check){
// Update final information
if (approximate){
update_status(work->info, OSQP_SOLVED_INACCURATE);
} else {
update_status(work->info, OSQP_SOLVED);
}
exitflag = 1;
}
else if (prim_inf_check){
// Update final information
if (approximate){
update_status(work->info, OSQP_PRIMAL_INFEASIBLE_INACCURATE);
} else {
update_status(work->info, OSQP_PRIMAL_INFEASIBLE);
}
if (work->settings->scaling && !work->settings->scaled_termination){
// Update infeasibility certificate
vec_ew_prod(work->scaling->E, work->delta_y, work->delta_y, work->data->m);
}
work->info->obj_val = OSQP_INFTY;
exitflag = 1;
}
else if (dual_inf_check){
// Update final information
if (approximate){
update_status(work->info, OSQP_DUAL_INFEASIBLE_INACCURATE);
} else {
update_status(work->info, OSQP_DUAL_INFEASIBLE);
}
if (work->settings->scaling && !work->settings->scaled_termination){
// Update infeasibility certificate
vec_ew_prod(work->scaling->D, work->delta_x, work->delta_x, work->data->n);
}
work->info->obj_val = -OSQP_INFTY;
exitflag = 1;
}
return exitflag;
}
#ifndef EMBEDDED
c_int validate_data(const OSQPData * data){
c_int j;
if(!data){
#ifdef PRINTING
c_print("Missing data!\n");
#endif
return 1;
}
// General dimensions Tests
if (data->n <= 0 || data->m < 0){
#ifdef PRINTING
c_print("n must be positive and m nonnegative; n = %i, m = %i\n",
(int)data->n, (int)data->m);
#endif
return 1;
}
// Matrix P
if (data->P->m != data->n ){
#ifdef PRINTING
c_print("P does not have dimension n x n with n = %i\n", (int)data->n);
#endif
return 1;
}
if (data->P->m != data->P->n ){
#ifdef PRINTING
c_print("P is not square\n");
#endif
return 1;
}
// Matrix A
if (data->A->m != data->m || data->A->n != data->n){
#ifdef PRINTING
c_print("A does not have dimension m x n with m = %i and n = %i\n",
(int)data->m, (int)data->n);
#endif
return 1;
}
// Lower and upper bounds
for (j = 0; j < data->m; j++) {
if (data->l[j] > data->u[j]) {
#ifdef PRINTING
c_print("Lower bound at index %d is greater than upper bound: %.4e > %.4e\n",
(int)j, data->l[j], data->u[j]);
#endif
return 1;
}
}
// TODO: Complete with other checks
return 0;
}
c_int validate_linsys_solver(c_int linsys_solver){
if (linsys_solver != SUITESPARSE_LDL_SOLVER &&
linsys_solver != MKL_PARDISO_SOLVER){
return 1;
}
// TODO: Add more solvers in case
// Valid solver
return 0;
}
c_int validate_settings(const OSQPSettings * settings){
if (!settings){
#ifdef PRINTING
c_print("Missing settings!\n");
#endif
return 1;
}
if (settings->scaling < 0) {
#ifdef PRINTING
c_print("scaling must be nonnegative\n");
#endif
return 1;
}
if (settings->adaptive_rho != 0 && settings->adaptive_rho != 1) {
#ifdef PRINTING
c_print("adaptive_rho must be either 0 or 1\n");
#endif
return 1;
}
if (settings->adaptive_rho_interval < 0) {
#ifdef PRINTING
c_print("adaptive_rho_interval must be nonnegative\n");
#endif
return 1;
}
if (settings->adaptive_rho_fraction <= 0) {
#ifdef PRINTING
c_print("adaptive_rho_fraction must be positive\n");
#endif
return 1;
}
if (settings->adaptive_rho_tolerance < 1) {
#ifdef PRINTING
c_print("adaptive_rho_tolerance must be >= 1\n");
#endif
return 1;
}
if (settings->polish_refine_iter < 0) {
#ifdef PRINTING
c_print("polish_refine_iter must be nonnegative\n");
#endif
return 1;
}
if (settings->rho <= 0) {
#ifdef PRINTING
c_print("rho must be positive\n");
#endif
return 1;
}
if (settings->delta <= 0) {
#ifdef PRINTING
c_print("delta must be positive\n");
#endif
return 1;
}
if (settings->max_iter <= 0) {
#ifdef PRINTING
c_print("max_iter must be positive\n");
#endif
return 1;
}
if (settings->eps_abs <= 0) {
#ifdef PRINTING
c_print("eps_abs must be positive\n");
#endif
return 1;
}
if (settings->eps_rel <= 0) {
#ifdef PRINTING
c_print("eps_rel must be positive\n");
#endif
return 1;
}
if (settings->eps_prim_inf <= 0) {
#ifdef PRINTING
c_print("eps_prim_inf must be positive\n");
#endif
return 1;
}
if (settings->eps_dual_inf <= 0) {
#ifdef PRINTING
c_print("eps_dual_inf must be positive\n");
#endif
return 1;
}
if (settings->alpha <= 0 || settings->alpha >= 2) {
#ifdef PRINTING
c_print("alpha must be between 0 and 2\n");
#endif
return 1;
}
if (validate_linsys_solver(settings->linsys_solver)){
#ifdef PRINTING
c_print("linsys_solver not recognized\n");
#endif
return 1;
}
if (settings->verbose != 0 && settings->verbose != 1) {
#ifdef PRINTING
c_print("verbose must be either 0 or 1\n");
#endif
return 1;
}
if (settings->scaled_termination != 0 && settings->scaled_termination != 1) {
#ifdef PRINTING
c_print("scaled_termination must be either 0 or 1\n");
#endif
return 1;
}
if (settings->check_termination < 0) {
#ifdef PRINTING
c_print("check_termination must be nonnegative\n");
#endif
return 1;
}
if (settings->warm_start != 0 && settings->warm_start != 1) {
#ifdef PRINTING
c_print("warm_start must be either 0 or 1\n");
#endif
return 1;
}
return 0;
}
#endif // #ifndef EMBEDDED