-
Notifications
You must be signed in to change notification settings - Fork 13
/
RecordSub.v
999 lines (860 loc) · 32 KB
/
RecordSub.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
(** * RecordSub: Subtyping with Records *)
Require Export MoreStlc.
(* ###################################################### *)
(** * Core Definitions *)
(* ################################### *)
(** *** Syntax *)
Inductive ty : Type :=
(* proper types *)
| TTop : ty
| TBase : id -> ty
| TArrow : ty -> ty -> ty
(* record types *)
| TRNil : ty
| TRCons : id -> ty -> ty -> ty.
Tactic Notation "T_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "TTop" | Case_aux c "TBase" | Case_aux c "TArrow"
| Case_aux c "TRNil" | Case_aux c "TRCons" ].
Inductive tm : Type :=
(* proper terms *)
| tvar : id -> tm
| tapp : tm -> tm -> tm
| tabs : id -> ty -> tm -> tm
| tproj : tm -> id -> tm
(* record terms *)
| trnil : tm
| trcons : id -> tm -> tm -> tm.
Tactic Notation "t_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "tvar" | Case_aux c "tapp" | Case_aux c "tabs"
| Case_aux c "tproj" | Case_aux c "trnil" | Case_aux c "trcons" ].
(* ################################### *)
(** *** Well-Formedness *)
Inductive record_ty : ty -> Prop :=
| RTnil :
record_ty TRNil
| RTcons : forall i T1 T2,
record_ty (TRCons i T1 T2).
Inductive record_tm : tm -> Prop :=
| rtnil :
record_tm trnil
| rtcons : forall i t1 t2,
record_tm (trcons i t1 t2).
Inductive well_formed_ty : ty -> Prop :=
| wfTTop :
well_formed_ty TTop
| wfTBase : forall i,
well_formed_ty (TBase i)
| wfTArrow : forall T1 T2,
well_formed_ty T1 ->
well_formed_ty T2 ->
well_formed_ty (TArrow T1 T2)
| wfTRNil :
well_formed_ty TRNil
| wfTRCons : forall i T1 T2,
well_formed_ty T1 ->
well_formed_ty T2 ->
record_ty T2 ->
well_formed_ty (TRCons i T1 T2).
Hint Constructors record_ty record_tm well_formed_ty.
(* ################################### *)
(** *** Substitution *)
Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar y => if eq_id_dec x y then s else t
| tabs y T t1 => tabs y T (if eq_id_dec x y then t1 else (subst x s t1))
| tapp t1 t2 => tapp (subst x s t1) (subst x s t2)
| tproj t1 i => tproj (subst x s t1) i
| trnil => trnil
| trcons i t1 tr2 => trcons i (subst x s t1) (subst x s tr2)
end.
Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).
(* ################################### *)
(** *** Reduction *)
Inductive value : tm -> Prop :=
| v_abs : forall x T t,
value (tabs x T t)
| v_rnil : value trnil
| v_rcons : forall i v vr,
value v ->
value vr ->
value (trcons i v vr).
Hint Constructors value.
Fixpoint Tlookup (i:id) (Tr:ty) : option ty :=
match Tr with
| TRCons i' T Tr' => if eq_id_dec i i' then Some T else Tlookup i Tr'
| _ => None
end.
Fixpoint tlookup (i:id) (tr:tm) : option tm :=
match tr with
| trcons i' t tr' => if eq_id_dec i i' then Some t else tlookup i tr'
| _ => None
end.
Reserved Notation "t1 '==>' t2" (at level 40).
Inductive step : tm -> tm -> Prop :=
| ST_AppAbs : forall x T t12 v2,
value v2 ->
(tapp (tabs x T t12) v2) ==> [x:=v2]t12
| ST_App1 : forall t1 t1' t2,
t1 ==> t1' ->
(tapp t1 t2) ==> (tapp t1' t2)
| ST_App2 : forall v1 t2 t2',
value v1 ->
t2 ==> t2' ->
(tapp v1 t2) ==> (tapp v1 t2')
| ST_Proj1 : forall tr tr' i,
tr ==> tr' ->
(tproj tr i) ==> (tproj tr' i)
| ST_ProjRcd : forall tr i vi,
value tr ->
tlookup i tr = Some vi ->
(tproj tr i) ==> vi
| ST_Rcd_Head : forall i t1 t1' tr2,
t1 ==> t1' ->
(trcons i t1 tr2) ==> (trcons i t1' tr2)
| ST_Rcd_Tail : forall i v1 tr2 tr2',
value v1 ->
tr2 ==> tr2' ->
(trcons i v1 tr2) ==> (trcons i v1 tr2')
where "t1 '==>' t2" := (step t1 t2).
Tactic Notation "step_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ST_AppAbs" | Case_aux c "ST_App1" | Case_aux c "ST_App2"
| Case_aux c "ST_Proj1" | Case_aux c "ST_ProjRcd" | Case_aux c "ST_Rcd"
| Case_aux c "ST_Rcd_Head" | Case_aux c "ST_Rcd_Tail" ].
Hint Constructors step.
(* ###################################################################### *)
(** * Subtyping *)
(** Now we come to the interesting part. We begin by defining
the subtyping relation and developing some of its important
technical properties. *)
(* ################################### *)
(** ** Definition *)
(** The definition of subtyping is essentially just what we
sketched in the motivating discussion, but we need to add
well-formedness side conditions to some of the rules. *)
Inductive subtype : ty -> ty -> Prop :=
(* Subtyping between proper types *)
| S_Refl : forall T,
well_formed_ty T ->
subtype T T
| S_Trans : forall S U T,
subtype S U ->
subtype U T ->
subtype S T
| S_Top : forall S,
well_formed_ty S ->
subtype S TTop
| S_Arrow : forall S1 S2 T1 T2,
subtype T1 S1 ->
subtype S2 T2 ->
subtype (TArrow S1 S2) (TArrow T1 T2)
(* Subtyping between record types *)
| S_RcdWidth : forall i T1 T2,
well_formed_ty (TRCons i T1 T2) ->
subtype (TRCons i T1 T2) TRNil
| S_RcdDepth : forall i S1 T1 Sr2 Tr2,
subtype S1 T1 ->
subtype Sr2 Tr2 ->
record_ty Sr2 ->
record_ty Tr2 ->
subtype (TRCons i S1 Sr2) (TRCons i T1 Tr2)
| S_RcdPerm : forall i1 i2 T1 T2 Tr3,
well_formed_ty (TRCons i1 T1 (TRCons i2 T2 Tr3)) ->
i1 <> i2 ->
subtype (TRCons i1 T1 (TRCons i2 T2 Tr3))
(TRCons i2 T2 (TRCons i1 T1 Tr3)).
Hint Constructors subtype.
Tactic Notation "subtype_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "S_Refl" | Case_aux c "S_Trans" | Case_aux c "S_Top"
| Case_aux c "S_Arrow" | Case_aux c "S_RcdWidth"
| Case_aux c "S_RcdDepth" | Case_aux c "S_RcdPerm" ].
(* ############################################### *)
(** ** Subtyping Examples and Exercises *)
Module Examples.
Notation x := (Id 0).
Notation y := (Id 1).
Notation z := (Id 2).
Notation j := (Id 3).
Notation k := (Id 4).
Notation i := (Id 5).
Notation A := (TBase (Id 6)).
Notation B := (TBase (Id 7)).
Notation C := (TBase (Id 8)).
Definition TRcd_j :=
(TRCons j (TArrow B B) TRNil). (* {j:B->B} *)
Definition TRcd_kj :=
TRCons k (TArrow A A) TRcd_j. (* {k:C->C,j:B->B} *)
Example subtyping_example_0 :
subtype (TArrow C TRcd_kj)
(TArrow C TRNil).
(* C->{k:A->A,j:B->B} <: C->{} *)
Proof.
apply S_Arrow.
apply S_Refl. auto.
unfold TRcd_kj, TRcd_j. apply S_RcdWidth; auto.
Qed.
(** The following facts are mostly easy to prove in Coq. To get
full benefit from the exercises, make sure you also
understand how to prove them on paper! *)
(** **** Exercise: 2 stars *)
Example subtyping_example_1 :
subtype TRcd_kj TRcd_j.
(* {k:A->A,j:B->B} <: {j:B->B} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 1 star *)
Example subtyping_example_2 :
subtype (TArrow TTop TRcd_kj)
(TArrow (TArrow C C) TRcd_j).
(* Top->{k:A->A,j:B->B} <: (C->C)->{j:B->B} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 1 star *)
Example subtyping_example_3 :
subtype (TArrow TRNil (TRCons j A TRNil))
(TArrow (TRCons k B TRNil) TRNil).
(* {}->{j:A} <: {k:B}->{} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars *)
Example subtyping_example_4 :
subtype (TRCons x A (TRCons y B (TRCons z C TRNil)))
(TRCons z C (TRCons y B (TRCons x A TRNil))).
(* {x:A,y:B,z:C} <: {z:C,y:B,x:A} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
Definition trcd_kj :=
(trcons k (tabs z A (tvar z))
(trcons j (tabs z B (tvar z))
trnil)).
End Examples.
(* ###################################################################### *)
(** ** Properties of Subtyping *)
(** *** Well-Formedness *)
Lemma subtype__wf : forall S T,
subtype S T ->
well_formed_ty T /\ well_formed_ty S.
Proof with eauto.
intros S T Hsub.
subtype_cases (induction Hsub) Case;
intros; try (destruct IHHsub1; destruct IHHsub2)...
Case "S_RcdPerm".
split... inversion H. subst. inversion H5... Qed.
Lemma wf_rcd_lookup : forall i T Ti,
well_formed_ty T ->
Tlookup i T = Some Ti ->
well_formed_ty Ti.
Proof with eauto.
intros i T.
T_cases (induction T) Case; intros; try solve by inversion.
Case "TRCons".
inversion H. subst. unfold Tlookup in H0.
destruct (eq_id_dec i i0)... inversion H0; subst... Qed.
(** *** Field Lookup *)
(** Our record matching lemmas get a little more complicated in
the presence of subtyping for two reasons: First, record
types no longer necessarily describe the exact structure of
corresponding terms. Second, reasoning by induction on
[has_type] derivations becomes harder in general, because
[has_type] is no longer syntax directed. *)
Lemma rcd_types_match : forall S T i Ti,
subtype S T ->
Tlookup i T = Some Ti ->
exists Si, Tlookup i S = Some Si /\ subtype Si Ti.
Proof with (eauto using wf_rcd_lookup).
intros S T i Ti Hsub Hget. generalize dependent Ti.
subtype_cases (induction Hsub) Case; intros Ti Hget;
try solve by inversion.
Case "S_Refl".
exists Ti...
Case "S_Trans".
destruct (IHHsub2 Ti) as [Ui Hui]... destruct Hui.
destruct (IHHsub1 Ui) as [Si Hsi]... destruct Hsi.
exists Si...
Case "S_RcdDepth".
rename i0 into k.
unfold Tlookup. unfold Tlookup in Hget.
destruct (eq_id_dec i k)...
SCase "i = k -- we're looking up the first field".
inversion Hget. subst. exists S1...
Case "S_RcdPerm".
exists Ti. split.
SCase "lookup".
unfold Tlookup. unfold Tlookup in Hget.
destruct (eq_id_dec i i1)...
SSCase "i = i1 -- we're looking up the first field".
destruct (eq_id_dec i i2)...
SSSCase "i = i2 - -contradictory".
destruct H0.
subst...
SCase "subtype".
inversion H. subst. inversion H5. subst... Qed.
(** **** Exercise: 3 stars (rcd_types_match_informal) *)
(** Write a careful informal proof of the [rcd_types_match]
lemma. *)
(* FILL IN HERE *)
(** [] *)
(** *** Inversion Lemmas *)
(** **** Exercise: 3 stars, optional (sub_inversion_arrow) *)
Lemma sub_inversion_arrow : forall U V1 V2,
subtype U (TArrow V1 V2) ->
exists U1, exists U2,
(U=(TArrow U1 U2)) /\ (subtype V1 U1) /\ (subtype U2 V2).
Proof with eauto.
intros U V1 V2 Hs.
remember (TArrow V1 V2) as V.
generalize dependent V2. generalize dependent V1.
(* FILL IN HERE *) Admitted.
(* ###################################################################### *)
(** * Typing *)
Definition context := id -> (option ty).
Definition empty : context := (fun _ => None).
Definition extend (Gamma : context) (x:id) (T : ty) :=
fun x' => if eq_id_dec x x' then Some T else Gamma x'.
Reserved Notation "Gamma '|-' t '\in' T" (at level 40).
Inductive has_type : context -> tm -> ty -> Prop :=
| T_Var : forall Gamma x T,
Gamma x = Some T ->
well_formed_ty T ->
has_type Gamma (tvar x) T
| T_Abs : forall Gamma x T11 T12 t12,
well_formed_ty T11 ->
has_type (extend Gamma x T11) t12 T12 ->
has_type Gamma (tabs x T11 t12) (TArrow T11 T12)
| T_App : forall T1 T2 Gamma t1 t2,
has_type Gamma t1 (TArrow T1 T2) ->
has_type Gamma t2 T1 ->
has_type Gamma (tapp t1 t2) T2
| T_Proj : forall Gamma i t T Ti,
has_type Gamma t T ->
Tlookup i T = Some Ti ->
has_type Gamma (tproj t i) Ti
(* Subsumption *)
| T_Sub : forall Gamma t S T,
has_type Gamma t S ->
subtype S T ->
has_type Gamma t T
(* Rules for record terms *)
| T_RNil : forall Gamma,
has_type Gamma trnil TRNil
| T_RCons : forall Gamma i t T tr Tr,
has_type Gamma t T ->
has_type Gamma tr Tr ->
record_ty Tr ->
record_tm tr ->
has_type Gamma (trcons i t tr) (TRCons i T Tr)
where "Gamma '|-' t '\in' T" := (has_type Gamma t T).
Hint Constructors has_type.
Tactic Notation "has_type_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "T_Var" | Case_aux c "T_Abs" | Case_aux c "T_App"
| Case_aux c "T_Proj" | Case_aux c "T_Sub"
| Case_aux c "T_RNil" | Case_aux c "T_RCons" ].
(* ############################################### *)
(** ** Typing Examples *)
Module Examples2.
Import Examples.
(** **** Exercise: 1 star *)
Example typing_example_0 :
has_type empty
(trcons k (tabs z A (tvar z))
(trcons j (tabs z B (tvar z))
trnil))
TRcd_kj.
(* empty |- {k=(\z:A.z), j=(\z:B.z)} : {k:A->A,j:B->B} *)
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars *)
Example typing_example_1 :
has_type empty
(tapp (tabs x TRcd_j (tproj (tvar x) j))
(trcd_kj))
(TArrow B B).
(* empty |- (\x:{k:A->A,j:B->B}. x.j) {k=(\z:A.z), j=(\z:B.z)} : B->B *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 2 stars, optional *)
Example typing_example_2 :
has_type empty
(tapp (tabs z (TArrow (TArrow C C) TRcd_j)
(tproj (tapp (tvar z)
(tabs x C (tvar x)))
j))
(tabs z (TArrow C C) trcd_kj))
(TArrow B B).
(* empty |- (\z:(C->C)->{j:B->B}. (z (\x:C.x)).j)
(\z:C->C. {k=(\z:A.z), j=(\z:B.z)})
: B->B *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
End Examples2.
(* ###################################################################### *)
(** ** Properties of Typing *)
(** *** Well-Formedness *)
Lemma has_type__wf : forall Gamma t T,
has_type Gamma t T -> well_formed_ty T.
Proof with eauto.
intros Gamma t T Htyp.
has_type_cases (induction Htyp) Case...
Case "T_App".
inversion IHHtyp1...
Case "T_Proj".
eapply wf_rcd_lookup...
Case "T_Sub".
apply subtype__wf in H.
destruct H...
Qed.
Lemma step_preserves_record_tm : forall tr tr',
record_tm tr ->
tr ==> tr' ->
record_tm tr'.
Proof.
intros tr tr' Hrt Hstp.
inversion Hrt; subst; inversion Hstp; subst; eauto.
Qed.
(** *** Field Lookup *)
Lemma lookup_field_in_value : forall v T i Ti,
value v ->
has_type empty v T ->
Tlookup i T = Some Ti ->
exists vi, tlookup i v = Some vi /\ has_type empty vi Ti.
Proof with eauto.
remember empty as Gamma.
intros t T i Ti Hval Htyp. revert Ti HeqGamma Hval.
has_type_cases (induction Htyp) Case; intros; subst; try solve by inversion.
Case "T_Sub".
apply (rcd_types_match S) in H0... destruct H0 as [Si [HgetSi Hsub]].
destruct (IHHtyp Si) as [vi [Hget Htyvi]]...
Case "T_RCons".
simpl in H0. simpl. simpl in H1.
destruct (eq_id_dec i i0).
SCase "i is first".
inversion H1. subst. exists t...
SCase "i in tail".
destruct (IHHtyp2 Ti) as [vi [get Htyvi]]...
inversion Hval... Qed.
(* ########################################## *)
(** *** Progress *)
(** **** Exercise: 3 stars (canonical_forms_of_arrow_types) *)
Lemma canonical_forms_of_arrow_types : forall Gamma s T1 T2,
has_type Gamma s (TArrow T1 T2) ->
value s ->
exists x, exists S1, exists s2,
s = tabs x S1 s2.
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
Theorem progress : forall t T,
has_type empty t T ->
value t \/ exists t', t ==> t'.
Proof with eauto.
intros t T Ht.
remember empty as Gamma.
revert HeqGamma.
has_type_cases (induction Ht) Case;
intros HeqGamma; subst...
Case "T_Var".
inversion H.
Case "T_App".
right.
destruct IHHt1; subst...
SCase "t1 is a value".
destruct IHHt2; subst...
SSCase "t2 is a value".
destruct (canonical_forms_of_arrow_types empty t1 T1 T2)
as [x [S1 [t12 Heqt1]]]...
subst. exists ([x:=t2]t12)...
SSCase "t2 steps".
destruct H0 as [t2' Hstp]. exists (tapp t1 t2')...
SCase "t1 steps".
destruct H as [t1' Hstp]. exists (tapp t1' t2)...
Case "T_Proj".
right. destruct IHHt...
SCase "rcd is value".
destruct (lookup_field_in_value t T i Ti) as [t' [Hget Ht']]...
SCase "rcd_steps".
destruct H0 as [t' Hstp]. exists (tproj t' i)...
Case "T_RCons".
destruct IHHt1...
SCase "head is a value".
destruct IHHt2...
SSCase "tail steps".
right. destruct H2 as [tr' Hstp].
exists (trcons i t tr')...
SCase "head steps".
right. destruct H1 as [t' Hstp].
exists (trcons i t' tr)... Qed.
(** Informal proof of progress:
Theorem : For any term [t] and type [T], if [empty |- t : T]
then [t] is a value or [t ==> t'] for some term [t'].
Proof : Let [t] and [T] be given such that [empty |- t : T]. We go
by induction on the typing derivation. Cases [T_Abs] and
[T_RNil] are immediate because abstractions and [{}] are always
values. Case [T_Var] is vacuous because variables cannot be
typed in the empty context.
- If the last step in the typing derivation is by [T_App], then
there are terms [t1] [t2] and types [T1] [T2] such that
[t = t1 t2], [T = T2], [empty |- t1 : T1 -> T2] and
[empty |- t2 : T1].
The induction hypotheses for these typing derivations yield
that [t1] is a value or steps, and that [t2] is a value or
steps. We consider each case:
- Suppose [t1 ==> t1'] for some term [t1']. Then
[t1 t2 ==> t1' t2] by [ST_App1].
- Otherwise [t1] is a value.
- Suppose [t2 ==> t2'] for some term [t2']. Then
[t1 t2 ==> t1 t2'] by rule [ST_App2] because [t1] is a value.
- Otherwise, [t2] is a value. By lemma
[canonical_forms_for_arrow_types], [t1 = \x:S1.s2] for some
[x], [S1], and [s2]. And [(\x:S1.s2) t2 ==> [x:=t2]s2] by
[ST_AppAbs], since [t2] is a value.
- If the last step of the derivation is by [T_Proj], then there
is a term [tr], type [Tr] and label [i] such that [t = tr.i],
[empty |- tr : Tr], and [Tlookup i Tr = Some T].
The IH for the typing subderivation gives us that either [tr]
is a value or it steps. If [tr ==> tr'] for some term [tr'],
then [tr.i ==> tr'.i] by rule [ST_Proj1].
Otherwise, [tr] is a value. In this case, lemma
[lookup_field_in_value] yields that there is a term [ti] such
that [tlookup i tr = Some ti]. It follows that [tr.i ==> ti]
by rule [ST_ProjRcd].
- If the final step of the derivation is by [T_Sub], then there
is a type [S] such that [S <: T] and [empty |- t : S]. The
desired result is exactly the induction hypothesis for the
typing subderivation.
- If the final step of the derivation is by [T_RCons], then there
exist some terms [t1] [tr], types [T1 Tr] and a label [t] such
that [t = {i=t1, tr}], [T = {i:T1, Tr}], [record_tm tr],
[record_tm Tr], [empty |- t1 : T1] and [empty |- tr : Tr].
The induction hypotheses for these typing derivations yield
that [t1] is a value or steps, and that [tr] is a value or
steps. We consider each case:
- Suppose [t1 ==> t1'] for some term [t1']. Then
[{i=t1, tr} ==> {i=t1', tr}] by rule [ST_Rcd_Head].
- Otherwise [t1] is a value.
- Suppose [tr ==> tr'] for some term [tr']. Then
[{i=t1, tr} ==> {i=t1, tr'}] by rule [ST_Rcd_Tail],
since [t1] is a value.
- Otherwise, [tr] is also a value. So, [{i=t1, tr}] is a
value by [v_rcons]. *)
(* ########################################## *)
(** *** Inversion Lemmas *)
Lemma typing_inversion_var : forall Gamma x T,
has_type Gamma (tvar x) T ->
exists S,
Gamma x = Some S /\ subtype S T.
Proof with eauto.
intros Gamma x T Hty.
remember (tvar x) as t.
has_type_cases (induction Hty) Case; intros;
inversion Heqt; subst; try solve by inversion.
Case "T_Var".
exists T...
Case "T_Sub".
destruct IHHty as [U [Hctx HsubU]]... Qed.
Lemma typing_inversion_app : forall Gamma t1 t2 T2,
has_type Gamma (tapp t1 t2) T2 ->
exists T1,
has_type Gamma t1 (TArrow T1 T2) /\
has_type Gamma t2 T1.
Proof with eauto.
intros Gamma t1 t2 T2 Hty.
remember (tapp t1 t2) as t.
has_type_cases (induction Hty) Case; intros;
inversion Heqt; subst; try solve by inversion.
Case "T_App".
exists T1...
Case "T_Sub".
destruct IHHty as [U1 [Hty1 Hty2]]...
assert (Hwf := has_type__wf _ _ _ Hty2).
exists U1... Qed.
Lemma typing_inversion_abs : forall Gamma x S1 t2 T,
has_type Gamma (tabs x S1 t2) T ->
(exists S2, subtype (TArrow S1 S2) T
/\ has_type (extend Gamma x S1) t2 S2).
Proof with eauto.
intros Gamma x S1 t2 T H.
remember (tabs x S1 t2) as t.
has_type_cases (induction H) Case;
inversion Heqt; subst; intros; try solve by inversion.
Case "T_Abs".
assert (Hwf := has_type__wf _ _ _ H0).
exists T12...
Case "T_Sub".
destruct IHhas_type as [S2 [Hsub Hty]]...
Qed.
Lemma typing_inversion_proj : forall Gamma i t1 Ti,
has_type Gamma (tproj t1 i) Ti ->
exists T, exists Si,
Tlookup i T = Some Si /\ subtype Si Ti /\ has_type Gamma t1 T.
Proof with eauto.
intros Gamma i t1 Ti H.
remember (tproj t1 i) as t.
has_type_cases (induction H) Case;
inversion Heqt; subst; intros; try solve by inversion.
Case "T_Proj".
assert (well_formed_ty Ti) as Hwf.
SCase "pf of assertion".
apply (wf_rcd_lookup i T Ti)...
apply has_type__wf in H...
exists T. exists Ti...
Case "T_Sub".
destruct IHhas_type as [U [Ui [Hget [Hsub Hty]]]]...
exists U. exists Ui... Qed.
Lemma typing_inversion_rcons : forall Gamma i ti tr T,
has_type Gamma (trcons i ti tr) T ->
exists Si, exists Sr,
subtype (TRCons i Si Sr) T /\ has_type Gamma ti Si /\
record_tm tr /\ has_type Gamma tr Sr.
Proof with eauto.
intros Gamma i ti tr T Hty.
remember (trcons i ti tr) as t.
has_type_cases (induction Hty) Case;
inversion Heqt; subst...
Case "T_Sub".
apply IHHty in H0.
destruct H0 as [Ri [Rr [HsubRS [HtypRi HtypRr]]]].
exists Ri. exists Rr...
Case "T_RCons".
assert (well_formed_ty (TRCons i T Tr)) as Hwf.
SCase "pf of assertion".
apply has_type__wf in Hty1.
apply has_type__wf in Hty2...
exists T. exists Tr... Qed.
Lemma abs_arrow : forall x S1 s2 T1 T2,
has_type empty (tabs x S1 s2) (TArrow T1 T2) ->
subtype T1 S1
/\ has_type (extend empty x S1) s2 T2.
Proof with eauto.
intros x S1 s2 T1 T2 Hty.
apply typing_inversion_abs in Hty.
destruct Hty as [S2 [Hsub Hty]].
apply sub_inversion_arrow in Hsub.
destruct Hsub as [U1 [U2 [Heq [Hsub1 Hsub2]]]].
inversion Heq; subst... Qed.
(* ########################################## *)
(** *** Context Invariance *)
Inductive appears_free_in : id -> tm -> Prop :=
| afi_var : forall x,
appears_free_in x (tvar x)
| afi_app1 : forall x t1 t2,
appears_free_in x t1 -> appears_free_in x (tapp t1 t2)
| afi_app2 : forall x t1 t2,
appears_free_in x t2 -> appears_free_in x (tapp t1 t2)
| afi_abs : forall x y T11 t12,
y <> x ->
appears_free_in x t12 ->
appears_free_in x (tabs y T11 t12)
| afi_proj : forall x t i,
appears_free_in x t ->
appears_free_in x (tproj t i)
| afi_rhead : forall x i t tr,
appears_free_in x t ->
appears_free_in x (trcons i t tr)
| afi_rtail : forall x i t tr,
appears_free_in x tr ->
appears_free_in x (trcons i t tr).
Hint Constructors appears_free_in.
Lemma context_invariance : forall Gamma Gamma' t S,
has_type Gamma t S ->
(forall x, appears_free_in x t -> Gamma x = Gamma' x) ->
has_type Gamma' t S.
Proof with eauto.
intros. generalize dependent Gamma'.
has_type_cases (induction H) Case;
intros Gamma' Heqv...
Case "T_Var".
apply T_Var... rewrite <- Heqv...
Case "T_Abs".
apply T_Abs... apply IHhas_type. intros x0 Hafi.
unfold extend. destruct (eq_id_dec x x0)...
Case "T_App".
apply T_App with T1...
Case "T_RCons".
apply T_RCons... Qed.
Lemma free_in_context : forall x t T Gamma,
appears_free_in x t ->
has_type Gamma t T ->
exists T', Gamma x = Some T'.
Proof with eauto.
intros x t T Gamma Hafi Htyp.
has_type_cases (induction Htyp) Case; subst; inversion Hafi; subst...
Case "T_Abs".
destruct (IHHtyp H5) as [T Hctx]. exists T.
unfold extend in Hctx. rewrite neq_id in Hctx... Qed.
(* ########################################## *)
(** *** Preservation *)
Lemma substitution_preserves_typing : forall Gamma x U v t S,
has_type (extend Gamma x U) t S ->
has_type empty v U ->
has_type Gamma ([x:=v]t) S.
Proof with eauto.
intros Gamma x U v t S Htypt Htypv.
generalize dependent S. generalize dependent Gamma.
t_cases (induction t) Case; intros; simpl.
Case "tvar".
rename i into y.
destruct (typing_inversion_var _ _ _ Htypt) as [T [Hctx Hsub]].
unfold extend in Hctx.
destruct (eq_id_dec x y)...
SCase "x=y".
subst.
inversion Hctx; subst. clear Hctx.
apply context_invariance with empty...
intros x Hcontra.
destruct (free_in_context _ _ S empty Hcontra) as [T' HT']...
inversion HT'.
SCase "x<>y".
destruct (subtype__wf _ _ Hsub)...
Case "tapp".
destruct (typing_inversion_app _ _ _ _ Htypt) as [T1 [Htypt1 Htypt2]].
eapply T_App...
Case "tabs".
rename i into y. rename t into T1.
destruct (typing_inversion_abs _ _ _ _ _ Htypt)
as [T2 [Hsub Htypt2]].
destruct (subtype__wf _ _ Hsub) as [Hwf1 Hwf2].
inversion Hwf2. subst.
apply T_Sub with (TArrow T1 T2)... apply T_Abs...
destruct (eq_id_dec x y).
SCase "x=y".
eapply context_invariance...
subst.
intros x Hafi. unfold extend.
destruct (eq_id_dec y x)...
SCase "x<>y".
apply IHt. eapply context_invariance...
intros z Hafi. unfold extend.
destruct (eq_id_dec y z)...
subst. rewrite neq_id...
Case "tproj".
destruct (typing_inversion_proj _ _ _ _ Htypt)
as [T [Ti [Hget [Hsub Htypt1]]]]...
Case "trnil".
eapply context_invariance...
intros y Hcontra. inversion Hcontra.
Case "trcons".
destruct (typing_inversion_rcons _ _ _ _ _ Htypt) as
[Ti [Tr [Hsub [HtypTi [Hrcdt2 HtypTr]]]]].
apply T_Sub with (TRCons i Ti Tr)...
apply T_RCons...
SCase "record_ty Tr".
apply subtype__wf in Hsub. destruct Hsub. inversion H0...
SCase "record_tm ([x:=v]t2)".
inversion Hrcdt2; subst; simpl... Qed.
Theorem preservation : forall t t' T,
has_type empty t T ->
t ==> t' ->
has_type empty t' T.
Proof with eauto.
intros t t' T HT.
remember empty as Gamma. generalize dependent HeqGamma.
generalize dependent t'.
has_type_cases (induction HT) Case;
intros t' HeqGamma HE; subst; inversion HE; subst...
Case "T_App".
inversion HE; subst...
SCase "ST_AppAbs".
destruct (abs_arrow _ _ _ _ _ HT1) as [HA1 HA2].
apply substitution_preserves_typing with T...
Case "T_Proj".
destruct (lookup_field_in_value _ _ _ _ H2 HT H)
as [vi [Hget Hty]].
rewrite H4 in Hget. inversion Hget. subst...
Case "T_RCons".
eauto using step_preserves_record_tm. Qed.
(** Informal proof of [preservation]:
Theorem: If [t], [t'] are terms and [T] is a type such that
[empty |- t : T] and [t ==> t'], then [empty |- t' : T].
Proof: Let [t] and [T] be given such that [empty |- t : T]. We go
by induction on the structure of this typing derivation, leaving
[t'] general. Cases [T_Abs] and [T_RNil] are vacuous because
abstractions and {} don't step. Case [T_Var] is vacuous as well,
since the context is empty.
- If the final step of the derivation is by [T_App], then there
are terms [t1] [t2] and types [T1] [T2] such that [t = t1 t2],
[T = T2], [empty |- t1 : T1 -> T2] and [empty |- t2 : T1].
By inspection of the definition of the step relation, there are
three ways [t1 t2] can step. Cases [ST_App1] and [ST_App2]
follow immediately by the induction hypotheses for the typing
subderivations and a use of [T_App].
Suppose instead [t1 t2] steps by [ST_AppAbs]. Then
[t1 = \x:S.t12] for some type [S] and term [t12], and
[t' = [x:=t2]t12].
By Lemma [abs_arrow], we have [T1 <: S] and [x:S1 |- s2 : T2].
It then follows by lemma [substitution_preserves_typing] that
[empty |- [x:=t2] t12 : T2] as desired.
- If the final step of the derivation is by [T_Proj], then there
is a term [tr], type [Tr] and label [i] such that [t = tr.i],
[empty |- tr : Tr], and [Tlookup i Tr = Some T].
The IH for the typing derivation gives us that, for any term
[tr'], if [tr ==> tr'] then [empty |- tr' Tr]. Inspection of
the definition of the step relation reveals that there are two
ways a projection can step. Case [ST_Proj1] follows
immediately by the IH.
Instead suppose [tr.i] steps by [ST_ProjRcd]. Then [tr] is a
value and there is some term [vi] such that
[tlookup i tr = Some vi] and [t' = vi]. But by lemma
[lookup_field_in_value], [empty |- vi : Ti] as desired.
- If the final step of the derivation is by [T_Sub], then there
is a type [S] such that [S <: T] and [empty |- t : S]. The
result is immediate by the induction hypothesis for the typing
subderivation and an application of [T_Sub].
- If the final step of the derivation is by [T_RCons], then there
exist some terms [t1] [tr], types [T1 Tr] and a label [t] such
that [t = {i=t1, tr}], [T = {i:T1, Tr}], [record_tm tr],
[record_tm Tr], [empty |- t1 : T1] and [empty |- tr : Tr].
By the definition of the step relation, [t] must have stepped
by [ST_Rcd_Head] or [ST_Rcd_Tail]. In the first case, the
result follows by the IH for [t1]'s typing derivation and
[T_RCons]. In the second case, the result follows by the IH
for [tr]'s typing derivation, [T_RCons], and a use of the
[step_preserves_record_tm] lemma. *)
(* ###################################################### *)
(** ** Exercises on Typing *)
(** **** Exercise: 2 stars, optional (variations) *)
(** Each part of this problem suggests a different way of
changing the definition of the STLC with records and
subtyping. (These changes are not cumulative: each part
starts from the original language.) In each part, list which
properties (Progress, Preservation, both, or neither) become
false. If a property becomes false, give a counterexample.
- Suppose we add the following typing rule:
Gamma |- t : S1->S2
S1 <: T1 T1 <: S1 S2 <: T2
----------------------------------- (T_Funny1)
Gamma |- t : T1->T2
- Suppose we add the following reduction rule:
------------------ (ST_Funny21)
{} ==> (\x:Top. x)
- Suppose we add the following subtyping rule:
-------------- (S_Funny3)
{} <: Top->Top
- Suppose we add the following subtyping rule:
-------------- (S_Funny4)
Top->Top <: {}
- Suppose we add the following evaluation rule:
----------------- (ST_Funny5)
({} t) ==> (t {})
- Suppose we add the same evaluation rule *and* a new typing rule:
----------------- (ST_Funny5)
({} t) ==> (t {})
---------------------- (T_Funny6)
empty |- {} : Top->Top
- Suppose we *change* the arrow subtyping rule to:
S1 <: T1 S2 <: T2
----------------------- (S_Arrow')
S1->S2 <: T1->T2
[]
*)
(* $Date: 2013-07-17 16:19:11 -0400 (Wed, 17 Jul 2013) $ *)