-
Notifications
You must be signed in to change notification settings - Fork 55
/
tomejerry.py
514 lines (441 loc) · 18.8 KB
/
tomejerry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import argparse
import logging
import sys
import traceback
import warnings
from collections import namedtuple
from typing import Iterable, Optional, Union, List, Dict, Any, Iterator
import os
import threading
import time
import pymysql
import progressbar
from abc import ABC
from enum import IntEnum
from helpers import mapsHelper
from helpers.config import Config
from objects import beatmap
from objects import score
from common.db import dbConnector
from objects import glob
MAX_WORKERS = 32
UNIX = os.name == "posix"
FAILED_SCORES_LOGGER = None
RecalculatorQuery = namedtuple("RecalculatorQuery", "query parameters")
class WorkerStatus(IntEnum):
NOT_STARTED = 0
WORKING = 1
DONE = 2
class Recalculator(ABC):
"""
Base PP Recalculator
"""
def __init__(self, ids_query: RecalculatorQuery, count_query: RecalculatorQuery):
"""
Instantiates a new recalculator
:param ids_query: `RecalculatorQuery` that fetches the `id`s of the scores of which pp will be recalculated
:param count_query: `RecalculatorQuery` that counts the _total_ number of the scoresof which pp will be
recalculated
"""
self.ids_query: RecalculatorQuery = ids_query
self.count_query: RecalculatorQuery = count_query
class SimpleRecalculator(Recalculator):
"""
A simple recalculator that can use a set of simple conditions, joined with logic ANDs
"""
def __init__(
self,
conditions: Union[Iterable[str], str],
parameters: Optional[Union[Iterable[str], Dict[str, Any]]] = None
):
"""
Initializes a new SimpleRecalculator
:param conditions: The conditions that will be joined with login ANDs.
They can be:
* an iterable (list, tuple, ...) of str (multiple conditions)
* str (one condition)
:param parameters: Iterable (list, tuple, ...) or dict that contains the query's parameters.
These will be passed to MySQLdb to bind the query's parameters (%s and %(name)s)
"""
if type(conditions) in (list, tuple):
conditions_str = " AND ".join(conditions)
elif type(conditions) is str:
conditions_str = conditions
else:
raise TypeError("`conditions` must be either a `str`, `tuple` or `list`")
q = "SELECT {} FROM scores JOIN beatmaps USING(beatmap_md5) WHERE {} ORDER BY scores.id DESC"
super(SimpleRecalculator, self).__init__(
ids_query=RecalculatorQuery(q.format("scores.id AS id", conditions_str), parameters),
count_query=RecalculatorQuery(q.format("COUNT(*) AS c", conditions_str), parameters)
)
class ScoreIdsPool:
"""
Pool of score ids that needs to be recalculated.
"""
logger = logging.getLogger("score_ids_pool")
def __init__(self):
"""
Initializes a new pool
"""
self._lock = threading.Lock()
self.scores: List[int] = []
def load(self, recalculator: Recalculator):
"""
Loads score ids in the pool from a Recalculator instance
:param recalculator: The recalculator instance that will be used to fetch the score ids
:return:
"""
with self._lock:
query_result = glob.db.fetchAll(recalculator.ids_query.query, recalculator.ids_query.parameters)
self.scores += [x["id"] for x in query_result]
self.logger.debug("Loaded {} scores".format(len(self.scores)))
def __iter__(self) -> Iterator[int]:
for x in self.scores:
with self._lock:
yield x
class Worker:
"""
A tomejerry worker. Recalculates pp for a set of scores.
"""
processed_scores_count = 0
recalculated_scores_count = 0
failed_scores_count = 0
processed_scores_count_lock = threading.Lock()
recalculated_scores_count_lock = threading.Lock()
failed_scores_count_lock = threading.Lock()
def __init__(self, pool_iter, *, worker_id: int = -1, start: bool = True, no_download: bool = False):
"""
Initializes a new worker.
:param worker_id: This worker's id. Optional. Default: -1.
:param start: Whether to start the worker immediately or not
:param no_download: If True, do not attempt to download non-existing maps.
:param
"""
self.pool_iter = pool_iter
self.worker_id: int = worker_id
self.thread: Optional[threading.Thread] = None
self.logger: logging.Logger = logging.getLogger("w{}".format(worker_id))
self.status: WorkerStatus = WorkerStatus.NOT_STARTED
self.no_download: bool = no_download
if start:
self.threaded_work()
@staticmethod
def recalc_score(score_data: Dict, no_download=False) -> Optional[score.score]:
"""
Recalculates pp for a score
:param score_data: dict containing score and beatmap information about a score.
:param no_download: if True, raise FileNotFoundError() if the map should be re-downloaded.
this ensures no requests are made to osu!
:return: new `score` object, with `pp` attribute set to the new value
"""
# Create score object and set its data
s: score.score = score.score()
s.setDataFromDict(score_data)
s.passed = True
# Create beatmap object and set its data
b: beatmap.beatmap = beatmap.beatmap()
b.setDataFromDict(score_data)
# Abort if we are running in no_download mode and the map should be re-downloaded
if no_download and mapsHelper.shouldDownloadMap(mapsHelper.cachedMapPath(b.beatmapID), b):
raise FileNotFoundError("no_download mode and local map not found")
# Calculate score pp
s.calculatePP(b)
del b
return s
def _work(self, close_connection: bool = True):
"""
Run worker's work. Fetches scores, recalculates pp and saves the results in the database.
:return:
"""
# Make sure the worker hasn't been disposed
if self.status == WorkerStatus.DONE:
raise RuntimeError("This worker has been disposed")
self.logger.info("Started worker.")
try:
# Recalculate all pp and store results in db
self.recalculate_pp()
finally:
# Mark the worker as disposed at the end
self.logger.debug("Disposing worker")
# Close the thread-local connection at the of the thread
if close_connection:
glob.threadScope.dbClose()
self.status = WorkerStatus.DONE
def recalculate_pp(self):
"""
Recalculates the pp and saves results in memory
:return:
"""
# We cannot use a SSDictCursor directly, because the connection will time out
# if the cursor doesn't consume every result before the `wait_timeout`, which is
# 600 seconds in MariaDB's default configuration. This means that we have to recalculate
# PPs for all scores in no more than 600 seconds, or we'll get a 'MySQL server has
# gone away error'. Fetching every score (joined with the respective beatmap)
# directly would take up too much RAM, so we fetch all the score_ids at the
# beginning with one query, store them in memory and fetch the data for
# each score, one by one, using the same connection (to avoid pool overhead)
self.status = WorkerStatus.WORKING
# self.recalculated_scores_count = 0
# Fetch all score_ids
# self.scores = [LwScore(x["id"], 0) for x in glob.db.fetchAll(self.ids_query.query, self.ids_query.parameters)]
# Get a db worker
db_connection = glob.threadScope.db
cursor = None
try:
# Get a cursor (normal DictCursor)
cursor = db_connection.cursor(pymysql.cursors.DictCursor)
for score_id in self.pool_iter:
# Fetch score and beatmap data for this id
cursor.execute(
"SELECT * FROM scores JOIN beatmaps USING(beatmap_md5) WHERE scores.id = %s LIMIT 1",
(score_id,)
)
score_ = cursor.fetchone()
try:
# Recalculate pp
try:
s = Worker.recalc_score(score_, no_download=self.no_download)
except FileNotFoundError as e:
if self.no_download:
# No map found locally
self.log_failed_score(score_, str(e))
continue
# Not running in no_download mode, something else happened. Re-raise.
raise e
if s.pp == 0:
# PP calculator error
self.log_failed_score(score_, "0 pp")
# Update in db
self.logger.debug(f"Updating {score_id} = {s.pp}")
cursor.execute("UPDATE scores SET pp = %s WHERE id = %s LIMIT 1", (s.pp, score_id))
with Worker.recalculated_scores_count_lock:
Worker.recalculated_scores_count += 1
# Mark for garbage collection
del s
except Exception as e:
self.log_failed_score(score_, str(e), traceback_=True)
finally:
del score_
with Worker.processed_scores_count_lock:
Worker.processed_scores_count += 1
if Worker.processed_scores_count % 1000 == 0:
self.logger.info(f"Processed {Worker.processed_scores_count} scores")
finally:
# Close cursor and connection
if cursor is not None:
cursor.close()
self.logger.debug("PP Recalculated")
def threaded_work(self):
"""
Starts this worker's work in a new thread
:return:
"""
self.thread = threading.Thread(target=self._work)
self.thread.start()
def log_failed_score(self, score_: Dict[str, Any], additional_information: str = "", traceback_: bool = False):
"""
Logs a failed score.
:param score_: score dict (from db) that triggered the error
:param additional_information: additional information (type of error)
:param traceback_: Whether the traceback should be logged or not.
It should be `True` if the logging was triggered by an unhandled exception
:return:
"""
msg = ""
if traceback_:
msg = "\n\n\nUnhandled exception: {}\n{}".format(sys.exc_info(), traceback.format_exc())
msg += "score_id:{} ({})".format(score_["id"], additional_information).strip()
FAILED_SCORES_LOGGER.error(msg)
with self.failed_scores_count_lock:
self.failed_scores_count += 1
def mass_recalc(
recalculator: Recalculator, workers_number: int = MAX_WORKERS,
no_download: bool = False,
) -> None:
"""
Recalculate performance points for a set of scores, using multiple workers
:param recalculator: the recalculator that will be used
:param workers_number: the number of workers to spawn
:param no_download: If True, do not attempt to download non-existing maps.
:return:
"""
start_time = time.time()
global FAILED_SCORES_LOGGER
workers = []
if no_download:
logging.warning("Running in no download mode.")
logging.info("Query: {} ({})".format(recalculator.ids_query.query, recalculator.ids_query.parameters))
# Fetch the total number of scores
total_scores = glob.db.fetch(recalculator.count_query.query, recalculator.count_query.parameters)
if total_scores is None:
logging.warning("No scores to recalc.")
return
# Set up failed scores logger (creates file too)
FAILED_SCORES_LOGGER = logging.getLogger("failed_scores")
FAILED_SCORES_LOGGER.addHandler(
logging.FileHandler("tomejerry_failed_scores_{}.log".format(time.strftime("%d-%m-%Y--%H-%M-%S")))
)
# Get the number of total scores from the result dict
total_scores = total_scores[next(iter(total_scores))]
logging.info("Total scores: {}".format(total_scores))
if total_scores == 0:
return
# scores_per_worker = math.ceil(total_scores / workers_number)
logging.info("Using {} workers".format(workers_number))
# Load score ids in the pool
logging.info("Filling score ids pool")
score_ids_pool = ScoreIdsPool()
score_ids_pool.load(recalculator)
it = iter(score_ids_pool)
# Spawn the workers and start them
for i in range(workers_number):
workers.append(
Worker(
it,
worker_id=i,
no_download=no_download,
start=True
)
)
# Progress bar loop
recycles = 0
widgets = [
"[ ", "Starting", " ]",
progressbar.FormatLabel(" %(value)s/%(max)s "),
progressbar.Bar(marker="#", left="[", right="]", fill="."),
progressbar.Percentage(),
" (", progressbar.ETA(), ") "
]
with progressbar.ProgressBar(
widgets=widgets,
max_value=total_scores,
redirect_stdout=True,
redirect_stderr=True
) as bar:
while True:
# Output total status information
widgets[1] = "Recalculating pp"
bar.update(Worker.processed_scores_count)
# Exit from the loop if every worker has finished its work
workers_done = [x for x in workers if x.status == WorkerStatus.DONE]
if len(workers_done) == len(workers):
break
# Wait and update the progress bar again
time.sleep(1)
# Recalc done. Print some stats
end_time = time.time()
logging.info(
"\n\nDone!\n"
":: Recalculated\t{} scores\n"
":: Failed\t{} scores\n"
":: Total\t{} scores\n\n"
":: Took\t{:.2f} seconds".format(
total_scores - Worker.failed_scores_count,
Worker.failed_scores_count,
total_scores,
end_time - start_time
)
)
def main():
# CLI stuff
parser = argparse.ArgumentParser(description="pp recalc tool for ripple, new version.")
recalc_group = parser.add_mutually_exclusive_group(required=False)
recalc_group.add_argument(
"-r", "--recalc", help="calculates pp for all high scores", required=False, action="store_true"
)
recalc_group.add_argument(
"-z", "--zero", help="calculates pp for 0 pp high scores", required=False, action="store_true"
)
recalc_group.add_argument("-i", "--id", help="calculates pp for the score with this score_id", required=False)
recalc_group.add_argument(
"-m", "--mods", help="calculates pp for high scores with these mods (flags)", required=False
)
recalc_group.add_argument(
"-x", "--relax", help="calculates pp for relax/autopilot scores (is_relax = 1)", required=False,
action="store_true"
)
recalc_group.add_argument(
"-g", "--gamemode", help="calculates pp for scores played on this game mode (std:0, taiko:1, ctb:2, mania:3)",
required=False
)
recalc_group.add_argument(
"-u", "--userid", help="calculates pp for high scores set by a specific user (user_id)", required=False
)
recalc_group.add_argument(
"-b",
"--beatmapid",
help="calculates pp for high scores played on a specific beatmap (beatmap_id)",
required=False
)
recalc_group.add_argument(
"-fhd", "--fixstdhd", help="calculates pp for std hd high scores (14/05/2018 pp algorithm changes)",
required=False, action="store_true"
)
parser.add_argument("-w", "--workers", help="number of workers. {} by default. Max {}".format(
MAX_WORKERS // 2, MAX_WORKERS
), required=False)
parser.add_argument("-v", "--verbose", help="verbose/debug mode", required=False, action="store_true")
parser.add_argument(
"-nodl",
"--no-download",
help="do not download non-existing maps. This will cause all scores on non-cached "
"map to fail, but will speed everything up if all maps are present.",
required=False,
action="store_true"
)
args = parser.parse_args()
# Logging
progressbar.streams.wrap_stderr()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
logging.root.setLevel(level=logging.DEBUG if args.verbose else logging.INFO)
logging.info("Running under {}".format("UNIX" if UNIX else "WIN32"))
# Load config
logging.info("Reading config file")
glob.conf = Config()
# Get workers from arguments if set
workers_number = MAX_WORKERS // 2
if args.workers is not None:
workers_number = int(args.workers)
# Disable MySQL db warnings (it spams 'Unsafe statement written to the binary log using statement...'
# because we use UPDATE with LIMIT 1 when updating performance points after recalculation
warnings.filterwarnings("ignore", category=pymysql.Warning)
# Connect to MySQL
logging.info("Connecting to MySQL db")
glob.db = dbConnector.db(
host=glob.conf["DB_HOST"],
port=glob.conf["DB_PORT"],
user=glob.conf["DB_USERNAME"],
password=glob.conf["DB_PASSWORD"],
database=glob.conf["DB_NAME"],
autocommit=True,
charset="utf8",
)
# Set verbose
glob.conf["DEBUG"] = args.verbose
# Get recalculator
recalculators_gen = {
"zero": lambda: SimpleRecalculator(("scores.completed = 3", "pp = 0")),
"recalc": lambda: SimpleRecalculator(("scores.completed = 3",)),
"mods": lambda: SimpleRecalculator(("scores.completed = 3", "mods & %s > 0"), (args.mods,)),
"id": lambda: SimpleRecalculator(("scores.id = %s",), (args.id,)),
"gamemode": lambda: SimpleRecalculator(("scores.completed = 3", "scores.play_mode = %s",), (args.gamemode,)),
"userid": lambda: SimpleRecalculator(("scores.completed = 3", "scores.userid = %s",), (args.userid,)),
"beatmapid":
lambda: SimpleRecalculator(("scores.completed = 3", "beatmaps.beatmap_id = %s",), (args.beatmapid,)),
"fixstdhd": lambda: SimpleRecalculator(("scores.completed = 3", "scores.play_mode = 0", "scores.mods & 8 > 0")),
"relax": lambda: SimpleRecalculator(("scores.is_relax = 1", "scores.completed = 3"))
}
recalculator = None
for k, v in vars(args).items():
if v is not None and ((type(v) is bool and v) or type(v) is not bool):
if k in recalculators_gen:
recalculator = recalculators_gen[k]()
break
# Execute mass recalc
if recalculator is not None:
mass_recalc(recalculator, workers_number, no_download=args.no_download)
else:
logging.warning("No recalc option specified")
parser.print_help()
if __name__ == "__main__":
main()