forked from mjg59/tpmtotp
-
Notifications
You must be signed in to change notification settings - Fork 4
/
oath.c
253 lines (220 loc) · 5.28 KB
/
oath.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/** \file
* Simple TOTP authentication library.
*
* cloned from bitbucket.org/hudosn/pebble/auth/src/totp.c
*/
#include <string.h>
#include "oath.h"
#define HASH_LENGTH 20
#define BLOCK_LENGTH 64
typedef union
{
uint8_t b[BLOCK_LENGTH];
uint32_t w[BLOCK_LENGTH/4];
} _buffer;
typedef union {
uint8_t b[HASH_LENGTH];
uint32_t w[HASH_LENGTH/4];
} _state;
static _buffer buffer;
static uint8_t bufferOffset;
static _state state;
static uint32_t byteCount;
static uint8_t keyBuffer[BLOCK_LENGTH];
static uint8_t innerHash[HASH_LENGTH];
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
static const uint8_t sha1InitState[] = {
0x01,0x23,0x45,0x67, // H0
0x89,0xab,0xcd,0xef, // H1
0xfe,0xdc,0xba,0x98, // H2
0x76,0x54,0x32,0x10, // H3
0xf0,0xe1,0xd2,0xc3 // H4
};
static void sha1_init(void) {
memcpy(state.b,sha1InitState,HASH_LENGTH);
byteCount = 0;
bufferOffset = 0;
}
static uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
return ((number << bits) | (number >> (32-bits)));
}
static void sha1_hashBlock() {
uint8_t i;
uint32_t a,b,c,d,e,t;
a=state.w[0];
b=state.w[1];
c=state.w[2];
d=state.w[3];
e=state.w[4];
for (i=0; i<80; i++) {
if (i>=16) {
t = buffer.w[(i+13)&15] ^ buffer.w[(i+8)&15] ^ buffer.w[(i+2)&15] ^ buffer.w[i&15];
buffer.w[i&15] = sha1_rol32(t,1);
}
if (i<20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
} else if (i<40) {
t = (b ^ c ^ d) + SHA1_K20;
} else if (i<60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
} else {
t = (b ^ c ^ d) + SHA1_K60;
}
t+=sha1_rol32(a,5) + e + buffer.w[i&15];
e=d;
d=c;
c=sha1_rol32(b,30);
b=a;
a=t;
}
state.w[0] += a;
state.w[1] += b;
state.w[2] += c;
state.w[3] += d;
state.w[4] += e;
}
void sha1_addUncounted(uint8_t data) {
buffer.b[bufferOffset ^ 3] = data;
bufferOffset++;
if (bufferOffset == BLOCK_LENGTH) {
sha1_hashBlock();
bufferOffset = 0;
}
}
void sha1_write(uint8_t data) {
++byteCount;
sha1_addUncounted(data);
}
void sha1_writebytes(const uint8_t* data, int length) {
for (int i=0; i<length; i++)
{
sha1_write(data[i]);
}
}
void sha1_pad() {
// Implement SHA-1 padding (fips180-2 §5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
sha1_addUncounted(0x80);
while (bufferOffset != 56) sha1_addUncounted(0x00);
// Append length in the last 8 bytes
sha1_addUncounted(0); // We're only using 32 bit lengths
sha1_addUncounted(0); // But SHA-1 supports 64 bit lengths
sha1_addUncounted(0); // So zero pad the top bits
sha1_addUncounted(byteCount >> 29); // Shifting to multiply by 8
sha1_addUncounted(byteCount >> 21); // as SHA-1 supports bitstreams as well as
sha1_addUncounted(byteCount >> 13); // byte.
sha1_addUncounted(byteCount >> 5);
sha1_addUncounted(byteCount << 3);
}
uint8_t* sha1_result(void) {
// Pad to complete the last block
sha1_pad();
// Swap byte order back
for (int i=0; i<5; i++) {
uint32_t a,b;
a=state.w[i];
b=a<<24;
b|=(a<<8) & 0x00ff0000;
b|=(a>>8) & 0x0000ff00;
b|=a>>24;
state.w[i]=b;
}
// Return pointer to hash (20 characters)
return state.b;
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void sha1_initHmac(const uint8_t* key, size_t keyLength) {
uint8_t i;
memset(keyBuffer,0,BLOCK_LENGTH);
if (keyLength > BLOCK_LENGTH) {
// Hash long keys
sha1_init();
for (;keyLength--;) sha1_write(*key++);
memcpy(keyBuffer,sha1_result(),HASH_LENGTH);
} else {
// Block length keys are used as is
memcpy(keyBuffer,key,keyLength);
}
// Start inner hash
sha1_init();
for (i=0; i<BLOCK_LENGTH; i++) {
sha1_write(keyBuffer[i] ^ HMAC_IPAD);
}
}
uint8_t* sha1_resultHmac(void) {
uint8_t i;
// Complete inner hash
memcpy(innerHash,sha1_result(),HASH_LENGTH);
// Calculate outer hash
sha1_init();
for (i=0; i<BLOCK_LENGTH; i++) sha1_write(keyBuffer[i] ^ HMAC_OPAD);
for (i=0; i<HASH_LENGTH; i++) sha1_write(innerHash[i]);
return sha1_result();
}
/** C function to do oauth computation */
uint32_t
oauth_calc(
uint32_t unix_epoch,
const uint8_t * secret,
size_t secret_len
)
{
const uint32_t now = unix_epoch / 30;
uint8_t byteArray[] = {
0,
0,
0,
0,
now >> 24,
now >> 16,
now >> 8,
now >> 0,
};
sha1_initHmac(secret, secret_len);
sha1_writebytes(byteArray, 8);
const uint8_t * const hash = sha1_resultHmac();
const unsigned offset = hash[20 - 1] & 0xF;
uint32_t truncatedHash = 0;
for (int j = 0; j < 4; ++j) {
truncatedHash <<= 8;
truncatedHash |= hash[offset + j];
}
truncatedHash &= 0x7FFFFFFF;
truncatedHash %= 1000000;
return truncatedHash;
}
/** C function to do hotp computation */
uint32_t
hotp_calc(
uint32_t counter,
const uint8_t * secret,
size_t secret_len
)
{
uint8_t byteArray[] = {
0,
0,
0,
0,
counter >> 24,
counter >> 16,
counter >> 8,
counter >> 0,
};
sha1_initHmac(secret, secret_len);
sha1_writebytes(byteArray, 8);
const uint8_t * const hash = sha1_resultHmac();
const unsigned offset = hash[20 - 1] & 0xF;
uint32_t truncatedHash = 0;
for (int j = 0; j < 4; ++j) {
truncatedHash <<= 8;
truncatedHash |= hash[offset + j];
}
truncatedHash &= 0x7FFFFFFF;
truncatedHash %= 1000000;
return truncatedHash;
}