forked from thieu1995/metaheuristics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_multiple_algo.py
189 lines (170 loc) · 6.88 KB
/
run_multiple_algo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import matplotlib as plt
import pickle as pkl
from models.multiple_solution.swarm_based.WOA import BaoWOA
from models.multiple_solution.swarm_based.PSO import BasePSO
from models.multiple_solution.swarm_based.BFO import ABFOLS
from models.multiple_solution.swarm_based.ABC import BaseABC
from models.multiple_solution.evolutionary_based.CRO import BaseCRO
from models.multiple_solution.evolutionary_based.GA import BaseGA
from models.multiple_solution.human_based.QSO import BaseQSO, LevyOppQSO
from models.multiple_solution.physics_based.TWO import BaseTWO
from utils.FunctionUtil import *
"""
GA
PSO
ABC - Artificial bee colony algorithm 2005
ABFOL - Adaptive Bacterial Foraging Optimization - 2012
CRO - The coral reefs optimization algorithm - 2014
CSO - Crisscross optimization algorithm - 2014
TWO - tug of war - 2016
WOA - 2016
QS0 - 2016
IQSO
"""
run_times = 15
problem_size = 30
epoch = 500
pop_size = 100
algo_dicts = {'WOA': BaoWOA, 'QSO': BaseQSO, 'IQSO': LevyOppQSO}
# GA': BaseGA}#, ,
# 'ABFOLS': ABFOLS, 'CRO': BaseCRO, 'TWO': BaseTWO,
fun_list = [C1, C2, C3, C4, C5, C6, C7, C8,
C9, C10, C11, C12, C13, C14, C15,
C16, C17, C18, C19, C20, C21, C22, C23,
C24, C25, C26, C27, C28, C29, C30]
global_min = [100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, 1100, 1200, 1300,
1400, 1500, 1600, 1700, 1800, 1900,
2000, 2100, 2200, 2300, 2400, 2500,
2600, 2700, 2800, 2900, 3000]
# run each algo 15 time with 30 different benmark functions
res = {}
for name, Algo in algo_dicts.items():
std_list = []
mean_list = []
worst_list = []
best_list = []
print("-----------------------------------")
for i in range(len(fun_list)):
list_best_fit = []
gbest_fit = np.inf
gworst_fit = np.inf
std = 0
mean = 0
best_loss = []
for time in range(run_times):
print("name {}, fun {}, time {}/{}".format(name, i, time, run_times))
root_paras = {
"problem_size": problem_size,
"domain_range": [-100, 100],
"print_train": False,
"objective_func": fun_list[i]
}
if name == 'GA':
algo_paras = {
"epoch": epoch,
"pop_size": pop_size,
"pc": 0.95,
"pm": 0.025
}
md = Algo(root_paras, algo_paras)
elif name == 'PSO':
algo_paras = {
"epoch": epoch,
"pop_size": pop_size,
"w_minmax": [0.4, 0.9], # [0-1] -> [0.4-0.9] Weight of bird
"c_minmax": [1.2, 1.2] # [(1.2, 1.2), (0.8, 2.0), (1.6, 0.6)] Effecting of local va global
}
md = Algo(root_paras, algo_paras)
elif name == 'ABC':
algo_paras = {
"epoch": epoch,
"pop_size": pop_size,
"couple_bees": [16, 4], # number of bees which provided for good location and other location
"patch_variables": [5.0, 0.985], # patch_variables = patch_variables * patch_factor (0.985)
"sites": [3, 1], # 3 bees (employed bees, onlookers and scouts), 1 good partition
}
md = Algo(root_paras, algo_paras)
elif name == 'ABFOLS':
algo_paras = {
"epoch": epoch,
"pop_size": pop_size,
"Ci": [0.1, 0.001], # C_s (start), C_e (end) -=> step size # step size in BFO
"Ped": 0.25, # p_eliminate
"Ns": 4, # swim_length
"N_minmax": [3, 40], # (Dead threshold value, split threshold value) -> N_adapt, N_split
}
md = Algo(root_paras, algo_paras)
elif name == 'CRO':
algo_paras = {
"epoch": epoch,
"pop_size": pop_size,
"G": [0.02, 0.2],
"GCR": 0.1,
"po": 0.4,
"Fb": 0.9,
"Fa": 0.1,
"Fd": 0.1,
"Pd": 0.1,
"k": 3
}
md = Algo(root_paras, algo_paras)
elif name == 'TWO':
algo_paras = {
"epoch": epoch,
"pop_size": pop_size,
}
md = Algo(root_paras, algo_paras)
elif name == 'WOA':
algo_paras = {
"epoch": epoch,
"pop_size": pop_size
}
md = Algo(root_paras, algo_paras)
elif name == 'QSO':
algo_paras = {
"epoch": epoch,
"pop_size": pop_size,
}
md = Algo(root_paras, algo_paras)
elif name == 'IQSO':
algo_paras = {
"epoch": pop_size,
"pop_size": pop_size,
}
md = Algo(root_paras, algo_paras)
_, loss_history, best_fit = md._train__()
if best_fit < gbest_fit:
gbest_fit = best_fit
best_loss = loss_history
list_best_fit.append(best_fit)
std = cal_std(list_best_fit, global_min[i])
mean = cal_mean(list_best_fit, global_min[i])
best = min(list_best_fit)
worst = max(list_best_fit)
std_list.append(std)
worst_list.append(worst)
best_list.append(best)
mean_list.append(mean)
fname = name + "_F" + str(i+1)
file_loss = fname + "_loss"
file_best_fit = fname + "_best_fit"
path_file_loss = './history/loss/' + file_loss
path_file_best_fit = './history/best_fit/' + file_best_fit
with open(path_file_loss + ".csv", 'w') as f_loss:
for loss in best_loss:
f_loss.write(str(loss) + '\n')
with open(path_file_loss + ".pkl", 'wb') as fo_loss:
pkl.dump(best_loss, fo_loss, pkl.HIGHEST_PROTOCOL)
with open(path_file_best_fit + ".csv", 'w') as f_fit:
for fit in list_best_fit:
f_fit.write(str(fit) + '\n')
with open(path_file_best_fit + ".pkl", 'wb') as fo_fit:
pkl.dump(list_best_fit, fo_fit, pkl.HIGHEST_PROTOCOL)
res[name] = {'std': std_list, 'mean': mean_list, 'worst': worst_list, 'best': best_list}
with open('./history/overall/res_woa_qso_iqso.csv', 'w') as f:
for k, v in res.items():
f.write(k + ',' + str(v) + '\n')
with open('./history/overall/res_woa_qso_iqso.pkl', 'wb') as f:
pkl.dump(res, f, pkl.HIGHEST_PROTOCOL)