diff --git a/docs/src/Groups/action.md b/docs/src/Groups/action.md index f36dd704da9..abf584b3a96 100644 --- a/docs/src/Groups/action.md +++ b/docs/src/Groups/action.md @@ -40,7 +40,7 @@ on_sets permuted on_indeterminates on_lines -on_rref_mats +on_echelon_form_mats on_subgroups ``` diff --git a/src/Groups/action.jl b/src/Groups/action.jl index 6a516a983d6..6398215f160 100644 --- a/src/Groups/action.jl +++ b/src/Groups/action.jl @@ -456,18 +456,18 @@ on_subgroups(x::T, g::GAPGroupElem) where T <: GAPGroup = T(on_subgroups(GapObj( @doc raw""" - on_rref_mats(m::MatElem{T}, x::MatrixGroupElem) where T <: FinFieldElem + on_echelon_form_mats(m::MatElem{T}, x::MatrixGroupElem) where T <: FinFieldElem Return the image of `m` under `x`, where the action is given by first computing the product `m * x` -and then normalizing the result by computing its reduced row echelon form, -see [`rref(M::MatrixElem{T})`](@ref). +and then normalizing the result by computing its reduced row echelon form +with `echelon_form`. Identifying `m` with the subspace of the natural module for the group of `x` that is generated by the rows of `m`, -`on_rref_mats` describes the action on subspaces of this natural module. -Note that for computing the orbit and stabilizer of `m` w.r.t. `on_rref_mats`, -`m` must be in reduced row echelon form. +`on_echelon_form_mats` describes the action on subspaces of this natural module. +Note that for computing the orbit and stabilizer of `m` w.r.t. +`on_echelon_form_mats`, `m` must be in reduced row echelon form. # Examples ```jldoctest @@ -482,15 +482,15 @@ julia> m = matrix(embW) [1 0 0] [0 0 1] -julia> S, _ = stabilizer(G, m, on_rref_mats); order(S) +julia> S, _ = stabilizer(G, m, on_echelon_form_mats); order(S) 24 -julia> orb = orbit(G, on_rref_mats, m); length(orb) +julia> orb = orbit(G, on_echelon_form_mats, m); length(orb) 7 ``` """ -function on_rref_mats(m::MatElem{T}, x::MatrixGroupElem) where T <: FinFieldElem - return rref(m * x)[2] +function on_echelon_form_mats(m::MatElem{T}, x::MatrixGroupElem) where T <: FinFieldElem + return echelon_form(m * x)[2] end @doc raw""" diff --git a/src/exports.jl b/src/exports.jl index 692069e559f..175896bef0c 100644 --- a/src/exports.jl +++ b/src/exports.jl @@ -1172,7 +1172,7 @@ export objective_function export omega_group export on_indeterminates export on_lines -export on_rref_mats +export on_echelon_form_mats export on_sets export on_sets_sets export on_simplicial_complex