forked from hybridgroup/gocv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
features2d.go
941 lines (795 loc) · 28.1 KB
/
features2d.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
package gocv
/*
#include <stdlib.h>
#include "features2d.h"
*/
import "C"
import (
"image/color"
"reflect"
"unsafe"
)
// AKAZE is a wrapper around the cv::AKAZE algorithm.
type AKAZE struct {
// C.AKAZE
p unsafe.Pointer
}
// NewAKAZE returns a new AKAZE algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/d8/d30/classcv_1_1AKAZE.html
//
func NewAKAZE() AKAZE {
return AKAZE{p: unsafe.Pointer(C.AKAZE_Create())}
}
// Close AKAZE.
func (a *AKAZE) Close() error {
C.AKAZE_Close((C.AKAZE)(a.p))
a.p = nil
return nil
}
// Detect keypoints in an image using AKAZE.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (a *AKAZE) Detect(src Mat) []KeyPoint {
ret := C.AKAZE_Detect((C.AKAZE)(a.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// DetectAndCompute keypoints and compute in an image using AKAZE.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#a8be0d1c20b08eb867184b8d74c15a677
//
func (a *AKAZE) DetectAndCompute(src Mat, mask Mat) ([]KeyPoint, Mat) {
desc := NewMat()
ret := C.AKAZE_DetectAndCompute((C.AKAZE)(a.p), src.p, mask.p, desc.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret), desc
}
// AgastFeatureDetector is a wrapper around the cv::AgastFeatureDetector.
type AgastFeatureDetector struct {
// C.AgastFeatureDetector
p unsafe.Pointer
}
// NewAgastFeatureDetector returns a new AgastFeatureDetector algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/d7/d19/classcv_1_1AgastFeatureDetector.html
//
func NewAgastFeatureDetector() AgastFeatureDetector {
return AgastFeatureDetector{p: unsafe.Pointer(C.AgastFeatureDetector_Create())}
}
// Close AgastFeatureDetector.
func (a *AgastFeatureDetector) Close() error {
C.AgastFeatureDetector_Close((C.AgastFeatureDetector)(a.p))
a.p = nil
return nil
}
// Detect keypoints in an image using AgastFeatureDetector.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (a *AgastFeatureDetector) Detect(src Mat) []KeyPoint {
ret := C.AgastFeatureDetector_Detect((C.AgastFeatureDetector)(a.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// BRISK is a wrapper around the cv::BRISK algorithm.
type BRISK struct {
// C.BRISK
p unsafe.Pointer
}
// NewBRISK returns a new BRISK algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/d8/d30/classcv_1_1AKAZE.html
//
func NewBRISK() BRISK {
return BRISK{p: unsafe.Pointer(C.BRISK_Create())}
}
// Close BRISK.
func (b *BRISK) Close() error {
C.BRISK_Close((C.BRISK)(b.p))
b.p = nil
return nil
}
// Detect keypoints in an image using BRISK.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (b *BRISK) Detect(src Mat) []KeyPoint {
ret := C.BRISK_Detect((C.BRISK)(b.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// DetectAndCompute keypoints and compute in an image using BRISK.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#a8be0d1c20b08eb867184b8d74c15a677
//
func (b *BRISK) DetectAndCompute(src Mat, mask Mat) ([]KeyPoint, Mat) {
desc := NewMat()
ret := C.BRISK_DetectAndCompute((C.BRISK)(b.p), src.p, mask.p, desc.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret), desc
}
// FastFeatureDetectorType defines the detector type
//
// For further details, please see:
// https://docs.opencv.org/master/df/d74/classcv_1_1FastFeatureDetector.html#a4654f6fb0aa4b8e9123b223bfa0e2a08
type FastFeatureDetectorType int
const (
//FastFeatureDetectorType58 is an alias of FastFeatureDetector::TYPE_5_8
FastFeatureDetectorType58 FastFeatureDetectorType = 0
//FastFeatureDetectorType712 is an alias of FastFeatureDetector::TYPE_7_12
FastFeatureDetectorType712 FastFeatureDetectorType = 1
//FastFeatureDetectorType916 is an alias of FastFeatureDetector::TYPE_9_16
FastFeatureDetectorType916 FastFeatureDetectorType = 2
)
// FastFeatureDetector is a wrapper around the cv::FastFeatureDetector.
type FastFeatureDetector struct {
// C.FastFeatureDetector
p unsafe.Pointer
}
// NewFastFeatureDetector returns a new FastFeatureDetector algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/df/d74/classcv_1_1FastFeatureDetector.html
//
func NewFastFeatureDetector() FastFeatureDetector {
return FastFeatureDetector{p: unsafe.Pointer(C.FastFeatureDetector_Create())}
}
// NewFastFeatureDetectorWithParams returns a new FastFeatureDetector algorithm with parameters
//
// For further details, please see:
// https://docs.opencv.org/master/df/d74/classcv_1_1FastFeatureDetector.html#ab986f2ff8f8778aab1707e2642bc7f8e
//
func NewFastFeatureDetectorWithParams(threshold int, nonmaxSuppression bool, typ FastFeatureDetectorType) FastFeatureDetector {
return FastFeatureDetector{p: unsafe.Pointer(C.FastFeatureDetector_CreateWithParams(C.int(threshold), C.bool(nonmaxSuppression), C.int(typ)))}
}
// Close FastFeatureDetector.
func (f *FastFeatureDetector) Close() error {
C.FastFeatureDetector_Close((C.FastFeatureDetector)(f.p))
f.p = nil
return nil
}
// Detect keypoints in an image using FastFeatureDetector.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (f *FastFeatureDetector) Detect(src Mat) []KeyPoint {
ret := C.FastFeatureDetector_Detect((C.FastFeatureDetector)(f.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// GFTTDetector is a wrapper around the cv::GFTTDetector algorithm.
type GFTTDetector struct {
// C.GFTTDetector
p unsafe.Pointer
}
// NewGFTTDetector returns a new GFTTDetector algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/df/d21/classcv_1_1GFTTDetector.html
//
func NewGFTTDetector() GFTTDetector {
return GFTTDetector{p: unsafe.Pointer(C.GFTTDetector_Create())}
}
// Close GFTTDetector.
func (a *GFTTDetector) Close() error {
C.GFTTDetector_Close((C.GFTTDetector)(a.p))
a.p = nil
return nil
}
// Detect keypoints in an image using GFTTDetector.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (a *GFTTDetector) Detect(src Mat) []KeyPoint {
ret := C.GFTTDetector_Detect((C.GFTTDetector)(a.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// KAZE is a wrapper around the cv::KAZE algorithm.
type KAZE struct {
// C.KAZE
p unsafe.Pointer
}
// NewKAZE returns a new KAZE algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/d3/d61/classcv_1_1KAZE.html
//
func NewKAZE() KAZE {
return KAZE{p: unsafe.Pointer(C.KAZE_Create())}
}
// Close KAZE.
func (a *KAZE) Close() error {
C.KAZE_Close((C.KAZE)(a.p))
a.p = nil
return nil
}
// Detect keypoints in an image using KAZE.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (a *KAZE) Detect(src Mat) []KeyPoint {
ret := C.KAZE_Detect((C.KAZE)(a.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// DetectAndCompute keypoints and compute in an image using KAZE.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#a8be0d1c20b08eb867184b8d74c15a677
//
func (a *KAZE) DetectAndCompute(src Mat, mask Mat) ([]KeyPoint, Mat) {
desc := NewMat()
ret := C.KAZE_DetectAndCompute((C.KAZE)(a.p), src.p, mask.p, desc.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret), desc
}
// MSER is a wrapper around the cv::MSER algorithm.
type MSER struct {
// C.MSER
p unsafe.Pointer
}
// NewMSER returns a new MSER algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/d3/d28/classcv_1_1MSER.html
//
func NewMSER() MSER {
return MSER{p: unsafe.Pointer(C.MSER_Create())}
}
// Close MSER.
func (a *MSER) Close() error {
C.MSER_Close((C.MSER)(a.p))
a.p = nil
return nil
}
// Detect keypoints in an image using MSER.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (a *MSER) Detect(src Mat) []KeyPoint {
ret := C.MSER_Detect((C.MSER)(a.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// ORB is a wrapper around the cv::ORB.
type ORB struct {
// C.ORB
p unsafe.Pointer
}
// NewORB returns a new ORB algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/db/d95/classcv_1_1ORB.html
//
func NewORB() ORB {
return ORB{p: unsafe.Pointer(C.ORB_Create())}
}
// NewORBWithParams returns a new ORB algorithm with parameters
//
// For further details, please see:
// https://docs.opencv.org/master/db/d95/classcv_1_1ORB.html#aeff0cbe668659b7ca14bb85ff1c4073b
//
func NewORBWithParams(nFeatures int, scaleFactor float32, nLevels int, edgeThreshold int, firstLevel int, WTAK int, scoreType ORBScoreType, patchSize int, fastThreshold int) ORB {
return ORB{p: unsafe.Pointer(C.ORB_CreateWithParams(
C.int(nFeatures),
C.float(scaleFactor),
C.int(nLevels),
C.int(edgeThreshold),
C.int(firstLevel),
C.int(WTAK),
C.int(scoreType),
C.int(patchSize),
C.int(fastThreshold),
))}
}
type ORBScoreType int
const (
ORBScoreTypeHarris ORBScoreType = 0
ORBScoreTypeFAST ORBScoreType = 1
)
// Close ORB.
func (o *ORB) Close() error {
C.ORB_Close((C.ORB)(o.p))
o.p = nil
return nil
}
// Detect keypoints in an image using ORB.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (o *ORB) Detect(src Mat) []KeyPoint {
ret := C.ORB_Detect((C.ORB)(o.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// DetectAndCompute detects keypoints and computes from an image using ORB.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#a8be0d1c20b08eb867184b8d74c15a677
//
func (o *ORB) DetectAndCompute(src Mat, mask Mat) ([]KeyPoint, Mat) {
desc := NewMat()
ret := C.ORB_DetectAndCompute((C.ORB)(o.p), src.p, mask.p, desc.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret), desc
}
// SimpleBlobDetector is a wrapper around the cv::SimpleBlobDetector.
type SimpleBlobDetector struct {
// C.SimpleBlobDetector
p unsafe.Pointer
}
// SimpleBlobDetector_Params is a wrapper around the cv::SimpleBlobdetector::Params
type SimpleBlobDetectorParams struct {
p C.SimpleBlobDetectorParams
}
// NewSimpleBlobDetector returns a new SimpleBlobDetector algorithm
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d7a/classcv_1_1SimpleBlobDetector.html
//
func NewSimpleBlobDetector() SimpleBlobDetector {
return SimpleBlobDetector{p: unsafe.Pointer(C.SimpleBlobDetector_Create())}
}
// NewSimpleBlobDetectorWithParams returns a new SimpleBlobDetector with custom parameters
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d7a/classcv_1_1SimpleBlobDetector.html
//
func NewSimpleBlobDetectorWithParams(params SimpleBlobDetectorParams) SimpleBlobDetector {
return SimpleBlobDetector{p: unsafe.Pointer(C.SimpleBlobDetector_Create_WithParams(params.p))}
}
// Close SimpleBlobDetector.
func (b *SimpleBlobDetector) Close() error {
C.SimpleBlobDetector_Close((C.SimpleBlobDetector)(b.p))
b.p = nil
return nil
}
// NewSimpleBlobDetectorParams returns the default parameters for the SimpleBobDetector
func NewSimpleBlobDetectorParams() SimpleBlobDetectorParams {
return SimpleBlobDetectorParams{p: C.SimpleBlobDetectorParams_Create()}
}
// SetBlobColor sets the blobColor field
func (p *SimpleBlobDetectorParams) SetBlobColor(blobColor int) {
p.p.blobColor = C.uchar(blobColor)
}
// GetBlobColor gets the blobColor field
func (p *SimpleBlobDetectorParams) GetBlobColor() int {
return int(p.p.blobColor)
}
// SetFilterByArea sets the filterByArea field
func (p *SimpleBlobDetectorParams) SetFilterByArea(filterByArea bool) {
p.p.filterByArea = C.bool(filterByArea)
}
// GetFilterByArea gets the filterByArea field
func (p *SimpleBlobDetectorParams) GetFilterByArea() bool {
return bool(p.p.filterByArea)
}
// SetFilterByCircularity sets the filterByCircularity field
func (p *SimpleBlobDetectorParams) SetFilterByCircularity(filterByCircularity bool) {
p.p.filterByCircularity = C.bool(filterByCircularity)
}
// GetFilterByCircularity gets the filterByCircularity field
func (p *SimpleBlobDetectorParams) GetFilterByCircularity() bool {
return bool(p.p.filterByCircularity)
}
// SetFilterByColor sets the filterByColor field
func (p *SimpleBlobDetectorParams) SetFilterByColor(filterByColor bool) {
p.p.filterByColor = C.bool(filterByColor)
}
// GetFilterByColor gets the filterByColor field
func (p *SimpleBlobDetectorParams) GetFilterByColor() bool {
return bool(p.p.filterByColor)
}
// SetFilterByConvexity sets the filterByConvexity field
func (p *SimpleBlobDetectorParams) SetFilterByConvexity(filterByConvexity bool) {
p.p.filterByConvexity = C.bool(filterByConvexity)
}
// GetFilterByConvexity gets the filterByConvexity field
func (p *SimpleBlobDetectorParams) GetFilterByConvexity() bool {
return bool(p.p.filterByConvexity)
}
// SetFilterByInertia sets the filterByInertia field
func (p *SimpleBlobDetectorParams) SetFilterByInertia(filterByInertia bool) {
p.p.filterByInertia = C.bool(filterByInertia)
}
// GetFilterByInertia gets the filterByInertia field
func (p *SimpleBlobDetectorParams) GetFilterByInertia() bool {
return bool(p.p.filterByInertia)
}
// SetMaxArea sets the maxArea parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMaxArea(maxArea float64) {
p.p.maxArea = C.float(maxArea)
}
// GetMaxArea sets the maxArea parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMaxArea() float64 {
return float64(p.p.maxArea)
}
// SetMaxCircularity sets the maxCircularity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMaxCircularity(maxCircularity float64) {
p.p.maxCircularity = C.float(maxCircularity)
}
// GetMaxCircularity sets the maxCircularity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMaxCircularity() float64 {
return float64(p.p.maxCircularity)
}
// SetMaxConvexity sets the maxConvexity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMaxConvexity(maxConvexity float64) {
p.p.maxConvexity = C.float(maxConvexity)
}
// GetMaxConvexity sets the maxConvexity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMaxConvexity() float64 {
return float64(p.p.maxConvexity)
}
// SetMaxInertiaRatio sets the maxInertiaRatio parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMaxInertiaRatio(maxInertiaRatio float64) {
p.p.maxInertiaRatio = C.float(maxInertiaRatio)
}
// GetMaxInertiaRatio sets the maxCConvexity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMaxInertiaRatio() float64 {
return float64(p.p.maxInertiaRatio)
}
// SetMaxThreshold sets the maxThreshold parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMaxThreshold(maxThreshold float64) {
p.p.maxThreshold = C.float(maxThreshold)
}
// GetMaxThreshold sets the maxCConvexity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMaxThreshold() float64 {
return float64(p.p.maxThreshold)
}
// SetMinArea sets the minArea parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMinArea(minArea float64) {
p.p.minArea = C.float(minArea)
}
// GetMinArea sets theinArea parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMinArea() float64 {
return float64(p.p.minArea)
}
// SetMinCircularity sets the minCircularity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMinCircularity(minCircularity float64) {
p.p.minCircularity = C.float(minCircularity)
}
// GetMinCircularity sets the minCircularity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMinCircularity() float64 {
return float64(p.p.minCircularity)
}
// SetMinConvexity sets the minConvexity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMinConvexity(minConvexity float64) {
p.p.minConvexity = C.float(minConvexity)
}
// GetMinConvexity sets the minConvexity parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMinConvexity() float64 {
return float64(p.p.minConvexity)
}
// SetMinDistBetweenBlobs sets the minDistBetweenBlobs parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMinDistBetweenBlobs(minDistBetweenBlobs float64) {
p.p.minDistBetweenBlobs = C.float(minDistBetweenBlobs)
}
// GetMinDistBetweenBlobs sets the minDistBetweenBlobs parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMinDistBetweenBlobs() float64 {
return float64(p.p.minDistBetweenBlobs)
}
// SetMinInertiaRatio sets the minInertiaRatio parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMinInertiaRatio(minInertiaRatio float64) {
p.p.minInertiaRatio = C.float(minInertiaRatio)
}
// GetMinInertiaRatio sets the minInertiaRatio parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMinInertiaRatio() float64 {
return float64(p.p.minInertiaRatio)
}
// SetMinRepeatability sets the minRepeatability parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMinRepeatability(minRepeatability int) {
p.p.minRepeatability = C.size_t(minRepeatability)
}
// GetMinInertiaRatio sets the minRepeatability parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMinRepeatability() int {
return int(p.p.minRepeatability)
}
// SetMinThreshold sets the minThreshold parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetMinThreshold(minThreshold float64) {
p.p.minThreshold = C.float(minThreshold)
}
// GetMinThreshold sets the minInertiaRatio parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetMinThreshold() float64 {
return float64(p.p.minThreshold)
}
// SetMinThreshold sets the minThreshold parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) SetThresholdStep(thresholdStep float64) {
p.p.thresholdStep = C.float(thresholdStep)
}
// GetMinThreshold sets the minInertiaRatio parameter for SimpleBlobDetector_Params
func (p *SimpleBlobDetectorParams) GetThresholdStep() float64 {
return float64(p.p.thresholdStep)
}
// Detect keypoints in an image using SimpleBlobDetector.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (b *SimpleBlobDetector) Detect(src Mat) []KeyPoint {
ret := C.SimpleBlobDetector_Detect((C.SimpleBlobDetector)(b.p), src.p)
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// getKeyPoints returns a slice of KeyPoint given a pointer to a C.KeyPoints
func getKeyPoints(ret C.KeyPoints) []KeyPoint {
cArray := ret.keypoints
length := int(ret.length)
hdr := reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(cArray)),
Len: length,
Cap: length,
}
s := *(*[]C.KeyPoint)(unsafe.Pointer(&hdr))
keys := make([]KeyPoint, length)
for i, r := range s {
keys[i] = KeyPoint{float64(r.x), float64(r.y), float64(r.size), float64(r.angle), float64(r.response),
int(r.octave), int(r.classID)}
}
return keys
}
// BFMatcher is a wrapper around the the cv::BFMatcher algorithm
type BFMatcher struct {
// C.BFMatcher
p unsafe.Pointer
}
// NewBFMatcher returns a new BFMatcher
//
// For further details, please see:
// https://docs.opencv.org/master/d3/da1/classcv_1_1BFMatcher.html#abe0bb11749b30d97f60d6ade665617bd
//
func NewBFMatcher() BFMatcher {
return BFMatcher{p: unsafe.Pointer(C.BFMatcher_Create())}
}
// NewBFMatcherWithParams creates a new BFMatchers but allows setting parameters
// to values other than just the defaults.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/da1/classcv_1_1BFMatcher.html#abe0bb11749b30d97f60d6ade665617bd
//
func NewBFMatcherWithParams(normType NormType, crossCheck bool) BFMatcher {
return BFMatcher{p: unsafe.Pointer(C.BFMatcher_CreateWithParams(C.int(normType), C.bool(crossCheck)))}
}
// Close BFMatcher
func (b *BFMatcher) Close() error {
C.BFMatcher_Close((C.BFMatcher)(b.p))
b.p = nil
return nil
}
// KnnMatch Finds the k best matches for each descriptor from a query set.
//
// For further details, please see:
// https://docs.opencv.org/master/db/d39/classcv_1_1DescriptorMatcher.html#aa880f9353cdf185ccf3013e08210483a
//
func (b *BFMatcher) KnnMatch(query, train Mat, k int) [][]DMatch {
ret := C.BFMatcher_KnnMatch((C.BFMatcher)(b.p), query.p, train.p, C.int(k))
defer C.MultiDMatches_Close(ret)
return getMultiDMatches(ret)
}
// FlannBasedMatcher is a wrapper around the the cv::FlannBasedMatcher algorithm
type FlannBasedMatcher struct {
// C.FlannBasedMatcher
p unsafe.Pointer
}
// NewFlannBasedMatcher returns a new FlannBasedMatcher
//
// For further details, please see:
// https://docs.opencv.org/master/dc/de2/classcv_1_1FlannBasedMatcher.html#ab9114a6471e364ad221f89068ca21382
//
func NewFlannBasedMatcher() FlannBasedMatcher {
return FlannBasedMatcher{p: unsafe.Pointer(C.FlannBasedMatcher_Create())}
}
// Close FlannBasedMatcher
func (f *FlannBasedMatcher) Close() error {
C.FlannBasedMatcher_Close((C.FlannBasedMatcher)(f.p))
f.p = nil
return nil
}
// KnnMatch Finds the k best matches for each descriptor from a query set.
//
// For further details, please see:
// https://docs.opencv.org/master/db/d39/classcv_1_1DescriptorMatcher.html#aa880f9353cdf185ccf3013e08210483a
//
func (f *FlannBasedMatcher) KnnMatch(query, train Mat, k int) [][]DMatch {
ret := C.FlannBasedMatcher_KnnMatch((C.FlannBasedMatcher)(f.p), query.p, train.p, C.int(k))
defer C.MultiDMatches_Close(ret)
return getMultiDMatches(ret)
}
func getMultiDMatches(ret C.MultiDMatches) [][]DMatch {
cArray := ret.dmatches
length := int(ret.length)
hdr := reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(cArray)),
Len: length,
Cap: length,
}
s := *(*[]C.DMatches)(unsafe.Pointer(&hdr))
keys := make([][]DMatch, length)
for i := range s {
keys[i] = getDMatches(C.MultiDMatches_get(ret, C.int(i)))
}
return keys
}
func getDMatches(ret C.DMatches) []DMatch {
cArray := ret.dmatches
length := int(ret.length)
hdr := reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(cArray)),
Len: length,
Cap: length,
}
s := *(*[]C.DMatch)(unsafe.Pointer(&hdr))
keys := make([]DMatch, length)
for i, r := range s {
keys[i] = DMatch{int(r.queryIdx), int(r.trainIdx), int(r.imgIdx),
float64(r.distance)}
}
return keys
}
// DrawMatchesFlag are the flags setting drawing feature
//
// For further details please see:
// https://docs.opencv.org/master/de/d30/structcv_1_1DrawMatchesFlags.html
type DrawMatchesFlag int
const (
// DrawDefault creates new image and for each keypoint only the center point will be drawn
DrawDefault DrawMatchesFlag = 0
// DrawOverOutImg draws matches on existing content of image
DrawOverOutImg DrawMatchesFlag = 1
// NotDrawSinglePoints will not draw single points
NotDrawSinglePoints DrawMatchesFlag = 2
// DrawRichKeyPoints draws the circle around each keypoint with keypoint size and orientation
DrawRichKeyPoints DrawMatchesFlag = 3
)
// DrawKeyPoints draws keypoints
//
// For further details please see:
// https://docs.opencv.org/master/d4/d5d/group__features2d__draw.html#gab958f8900dd10f14316521c149a60433
func DrawKeyPoints(src Mat, keyPoints []KeyPoint, dst *Mat, color color.RGBA, flag DrawMatchesFlag) {
cKeyPointArray := make([]C.struct_KeyPoint, len(keyPoints))
for i, kp := range keyPoints {
cKeyPointArray[i].x = C.double(kp.X)
cKeyPointArray[i].y = C.double(kp.Y)
cKeyPointArray[i].size = C.double(kp.Size)
cKeyPointArray[i].angle = C.double(kp.Angle)
cKeyPointArray[i].response = C.double(kp.Response)
cKeyPointArray[i].octave = C.int(kp.Octave)
cKeyPointArray[i].classID = C.int(kp.ClassID)
}
cKeyPoints := C.struct_KeyPoints{
keypoints: (*C.struct_KeyPoint)(&cKeyPointArray[0]),
length: (C.int)(len(keyPoints)),
}
scalar := C.struct_Scalar{
val1: C.double(color.B),
val2: C.double(color.G),
val3: C.double(color.R),
val4: C.double(color.A),
}
C.DrawKeyPoints(src.p, cKeyPoints, dst.p, scalar, C.int(flag))
}
// SIFT is a wrapper around the cv::SIFT algorithm.
// Due to the patent having expired, this is now in the main OpenCV code modules.
type SIFT struct {
// C.SIFT
p unsafe.Pointer
}
// NewSIFT returns a new SIFT algorithm.
//
// For further details, please see:
// https://docs.opencv.org/master/d5/d3c/classcv_1_1xfeatures2d_1_1SIFT.html
//
func NewSIFT() SIFT {
return SIFT{p: unsafe.Pointer(C.SIFT_Create())}
}
// Close SIFT.
func (d *SIFT) Close() error {
C.SIFT_Close((C.SIFT)(d.p))
d.p = nil
return nil
}
// Detect keypoints in an image using SIFT.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#aa4e9a7082ec61ebc108806704fbd7887
//
func (d *SIFT) Detect(src Mat) []KeyPoint {
ret := C.SIFT_Detect((C.SIFT)(d.p), C.Mat(src.Ptr()))
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret)
}
// DetectAndCompute detects and computes keypoints in an image using SIFT.
//
// For further details, please see:
// https://docs.opencv.org/master/d0/d13/classcv_1_1Feature2D.html#a8be0d1c20b08eb867184b8d74c15a677
//
func (d *SIFT) DetectAndCompute(src Mat, mask Mat) ([]KeyPoint, Mat) {
desc := NewMat()
ret := C.SIFT_DetectAndCompute((C.SIFT)(d.p), C.Mat(src.Ptr()), C.Mat(mask.Ptr()),
C.Mat(desc.Ptr()))
defer C.KeyPoints_Close(ret)
return getKeyPoints(ret), desc
}
// DrawMatches draws matches on combined train and querry images.
//
// For further details, please see:
// https://docs.opencv.org/master/d4/d5d/group__features2d__draw.html#gad8f463ccaf0dc6f61083abd8717c261a
func DrawMatches(img1 Mat, kp1 []KeyPoint, img2 Mat, kp2 []KeyPoint, matches1to2 []DMatch, outImg *Mat, matchColor color.RGBA, singlePointColor color.RGBA, matchesMask []byte, flags DrawMatchesFlag) {
kp1arr := make([]C.struct_KeyPoint, len(kp1))
kp2arr := make([]C.struct_KeyPoint, len(kp2))
for i, kp := range kp1 {
kp1arr[i].x = C.double(kp.X)
kp1arr[i].y = C.double(kp.Y)
kp1arr[i].size = C.double(kp.Size)
kp1arr[i].angle = C.double(kp.Angle)
kp1arr[i].response = C.double(kp.Response)
kp1arr[i].octave = C.int(kp.Octave)
kp1arr[i].classID = C.int(kp.ClassID)
}
for i, kp := range kp2 {
kp2arr[i].x = C.double(kp.X)
kp2arr[i].y = C.double(kp.Y)
kp2arr[i].size = C.double(kp.Size)
kp2arr[i].angle = C.double(kp.Angle)
kp2arr[i].response = C.double(kp.Response)
kp2arr[i].octave = C.int(kp.Octave)
kp2arr[i].classID = C.int(kp.ClassID)
}
cKeyPoints1 := C.struct_KeyPoints{
keypoints: (*C.struct_KeyPoint)(&kp1arr[0]),
length: (C.int)(len(kp1)),
}
cKeyPoints2 := C.struct_KeyPoints{
keypoints: (*C.struct_KeyPoint)(&kp2arr[0]),
length: (C.int)(len(kp2)),
}
dMatchArr := make([]C.struct_DMatch, len(matches1to2))
for i, dm := range matches1to2 {
dMatchArr[i].queryIdx = C.int(dm.QueryIdx)
dMatchArr[i].trainIdx = C.int(dm.TrainIdx)
dMatchArr[i].imgIdx = C.int(dm.ImgIdx)
dMatchArr[i].distance = C.float(dm.Distance)
}
cDMatches := C.struct_DMatches{
dmatches: (*C.struct_DMatch)(&dMatchArr[0]),
length: (C.int)(len(matches1to2)),
}
scalarMatchColor := C.struct_Scalar{
val1: C.double(matchColor.R),
val2: C.double(matchColor.G),
val3: C.double(matchColor.B),
val4: C.double(matchColor.A),
}
scalarPointColor := C.struct_Scalar{
val1: C.double(singlePointColor.B),
val2: C.double(singlePointColor.G),
val3: C.double(singlePointColor.R),
val4: C.double(singlePointColor.A),
}
mask := make([]C.char, len(matchesMask))
cByteArray := C.struct_ByteArray{
length: (C.int)(len(matchesMask)),
}
if len(matchesMask) > 0 {
cByteArray = C.struct_ByteArray{
data: (*C.char)(&mask[0]),
length: (C.int)(len(matchesMask)),
}
}
C.DrawMatches(img1.p, cKeyPoints1, img2.p, cKeyPoints2, cDMatches, outImg.p, scalarMatchColor, scalarPointColor, cByteArray, C.int(flags))
}