-
Notifications
You must be signed in to change notification settings - Fork 13
/
model.py
130 lines (114 loc) · 4.66 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# -*- coding:utf-8 -*-
import torch
import torch.nn as nn
import numpy as np
import math
def get_upsample_filter(size):
"""Make a 2D bilinear kernel suitable for upsampling"""
factor = (size + 1) // 2
if size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:size, :size]
filter = (1 - abs(og[0] - center) / factor) * \
(1 - abs(og[1] - center) / factor)
return torch.from_numpy(filter).float()
class _Conv_Block(nn.Module):
def __init__(self):
super(_Conv_Block, self).__init__()
self.upsample = nn.Sequential(
nn.ConvTranspose2d(in_channels=64, out_channels=64, kernel_size=4, stride=2, padding=1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
)
self.rblock = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
)
self.trans = nn.Sequential(
nn.Conv2d(in_channels=256, out_channels=64, kernel_size=1, stride=1, padding=0, bias=False),
nn.LeakyReLU(0.2, inplace=True),
)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.global_pool = nn.AdaptiveAvgPool2d(1)
self.conv_down = nn.Conv2d(
256, 16, kernel_size=1, bias=False)
self.conv_up = nn.Conv2d(
16, 256, kernel_size=1, bias=False)
self.sig = nn.Sigmoid()
def resBlock(self, x):
out=self.rblock(x)
out1 = self.global_pool(out)
out1 = self.conv_down(out1)
out1 = self.relu(out1)
out1 = self.conv_up(out1)
out1 = self.sig(out1)
out=out*out1
out=self.trans(out)
out=x+out
return out
def forward(self, x):
depth=4
list_out=[]
for i in range(depth):
x=self.resBlock(x)
output = self.upsample(x)
list_out.append(output)
return list_out
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv_input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.LeakyReLU(0.2, inplace=True)
self.convt_I1 = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=4, stride=2, padding=1, bias=False)
self.convt_R1 = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)
self.convt_F1 = self.make_layer(_Conv_Block)
self.convt_I2 = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=4, stride=2, padding=1, bias=False)
self.convt_R2 = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False)
self.convt_F2 = self.make_layer(_Conv_Block)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
if isinstance(m, nn.ConvTranspose2d):
c1, c2, h, w = m.weight.data.size()
weight = get_upsample_filter(h)
m.weight.data = weight.view(1, 1, h, w).repeat(c1, c2, 1, 1)
if m.bias is not None:
m.bias.data.zero_()
def make_layer(self, block):
layers = []
layers.append(block())
return nn.Sequential(*layers)
def forward(self, x):
out = self.relu(self.conv_input(x))
convt_F1 = self.convt_F1(out)
convt_I1 = self.convt_I1(x)
HR_2x = []
HR_4x = []
for i in range(len(convt_F1)):
convt_R1 = self.convt_R1(convt_F1[i])
tmp = convt_I1 + convt_R1
HR_2x.append(tmp)
convt_F2 = self.convt_F2(convt_F1[-1])
convt_I2 = self.convt_I2(HR_2x[-1])
for j in range(len(convt_F2)):
convt_R2 = self.convt_R2(convt_F2[j])
tmp = convt_I2 + convt_R2
HR_4x.append(tmp)
return HR_2x, HR_4x
class L1_Charbonnier_loss(nn.Module):
"""L1 Charbonnierloss. From PyTorch LapSRN"""
def __init__(self):
super(L1_Charbonnier_loss, self).__init__()
self.eps = 1e-6
def forward(self, X, Y):
diff = torch.add(X, -Y)
error = torch.sqrt( diff * diff + self.eps )
loss = torch.sum(error)
return loss