-
Notifications
You must be signed in to change notification settings - Fork 13
/
main.py
137 lines (111 loc) · 5.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# -*- coding:utf-8 -*-
import argparse, os
import torch
import random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from model import Net, L1_Charbonnier_loss
from dataset import DatasetFromHdf5
# Training settings
parser = argparse.ArgumentParser(description="Modified from PyTorch LapSRN")
parser.add_argument("--batchSize", type=int, default=64, help="training batch size")
parser.add_argument("--nEpochs", type=int, default=100, help="number of epochs to train for")
parser.add_argument("--lr", type=float, default=1e-4, help="Learning Rate. Default=1e-4")
parser.add_argument("--step", type=int, default=300, help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=300")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--resume", default="", type=str, help="Path to checkpoint (default: none)")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--threads", type=int, default=1, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--momentum", default=0.9, type=float, help="Momentum, Default: 0.9")
parser.add_argument("--weight-decay", "--wd", default=1e-4, type=float, help="weight decay, Default: 1e-4")
parser.add_argument("--pretrained", default="", type=str, help="path to pretrained model (default: none)")
def main():
global opt, model
opt = parser.parse_args()
print opt
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
train_set = DatasetFromHdf5("../lapsrn/data/data.h5")
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
print("===> Building model")
model = Net()
criterion = L1_Charbonnier_loss()
print("===> Setting GPU")
if cuda:
model = model.cuda()
criterion = criterion.cuda()
else:
model = model.cpu()
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint["epoch"] + 1
model.load_state_dict(checkpoint["model"].state_dict())
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# optionally copy weights from a checkpoint
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("=> loading model '{}'".format(opt.pretrained))
weights = torch.load(opt.pretrained)
model.load_state_dict(weights['model'].state_dict())
else:
print("=> no model found at '{}'".format(opt.pretrained))
print("===> Setting Optimizer")
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
print("===> Training")
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizer, model, criterion, epoch)
save_checkpoint(model, epoch)
def adjust_learning_rate(optimizer, epoch):
lr = opt.lr * (0.1 ** (epoch // opt.step))
return lr
def train(training_data_loader, optimizer, model, criterion, epoch):
lr = adjust_learning_rate(optimizer, epoch-1)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print "epoch =", epoch,"lr =",optimizer.param_groups[0]["lr"]
model.train()
for iteration, batch in enumerate(training_data_loader, 1):
input, label_x2, label_x4 = Variable(batch[0]), Variable(batch[1], requires_grad=False), Variable(batch[2], requires_grad=False)
if opt.cuda:
input = input.cuda()
label_x2 = label_x2.cuda()
label_x4 = label_x4.cuda()
HR_2x, HR_4x = model(input)
loss_x2 = branchLoss(HR_2x, label_x2 ,criterion)
loss_x4 = branchLoss(HR_4x, label_x4 ,criterion)
loss = loss_x2 + loss_x4
optimizer.zero_grad()
loss_x2.backward(retain_variables=True)
loss_x4.backward()
optimizer.step()
if iteration%100 == 0:
print("===> Epoch[{}]({}/{}): Loss: {:.10f}".format(epoch, iteration, len(training_data_loader), loss.data[0]))
def save_checkpoint(model, epoch):
savedir = "checkpoints/"
model_out_path = savedir + "model_epoch_{}.pth".format(epoch)
state = {"epoch": epoch ,"model": model}
if not os.path.exists(savedir):
os.makedirs(savedir)
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def branchLoss(imglist,img,criterion):
# for multi supervised mode
loss = criterion(imglist[-1], img)
return loss
if __name__ == "__main__":
main()