-
Notifications
You must be signed in to change notification settings - Fork 443
/
template.yaml
63 lines (63 loc) · 1.51 KB
/
template.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
name: person-vehicle-bike-detection-2003
domain: Object Detection
problem: Person Vehicle Bike Detection
framework: OTEDetection v2.9.1
summary: Person Vehicle Bike Detection based on MobileNetV2 (SSD).
annotation_format: COCO
initial_weights: snapshot.pth
dependencies:
- sha256: d2d53b376229c002d7204c1f8ad10fbae5f065fbabb7e4ef7a67a1905168f2f6
size: 15863668
source: https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/models/object_detection/v2/vehicle-person-bike-detection-2003.pth
destination: snapshot.pth
- source: ../../../../../ote/tools/train.py
destination: train.py
- source: ../../../../../ote/tools/eval.py
destination: eval.py
- source: ../../../../../ote/tools/export.py
destination: export.py
- source: ../../../../../ote/tools/compress.py
destination: compress.py
- source: ../../../../../ote
destination: packages/ote
- source: ../../requirements.txt
destination: requirements.txt
dataset_requirements:
classes:
- vehicle
- person
- non-vehicle
max_nodes: 1
training_target:
- GPU
inference_target:
- CPU
- iGPU
hyper_parameters:
basic:
batch_size: 14
base_learning_rate: 0.025
epochs: 20
output_format:
onnx:
default: true
openvino:
default: true
input_format: BGR
optimisations: ~
metrics:
- display_name: Size
key: size
unit: Mp
value: 1.95
- display_name: Complexity
key: complexity
unit: GFLOPs
value: 6.78
- display_name: mAP @ [IoU=0.50:0.95]
key: map
unit: '%'
value: 33.6
gpu_num: 2
tensorboard: true
config: model.py