-
Notifications
You must be signed in to change notification settings - Fork 443
/
template.yaml
75 lines (75 loc) · 2.35 KB
/
template.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
name: instance-segmentation-0002
domain: Instance Segmentation
problem: COCO Instance Segmentation
framework: OTEDetection v2.9.1
summary: Instance segmentation based on Mask R-CNN architecture with ResNet50.
annotation_format: COCO
initial_weights: snapshot.pth
dependencies:
- sha256: 42aa3d0009d2ed454406c1270bba9da70f6e5c7a6a96fa447fd568302bf700d1
size: 177867103
source: https://download.01.org/opencv/openvino_training_extensions/models/instance_segmentation/v2/instance-segmentation-0002.pth
destination: snapshot.pth
- source: ../../../../../ote/tools/train.py
destination: train.py
- source: ../../../../../ote/tools/eval.py
destination: eval.py
- source: ../../../../../ote/tools/export.py
destination: export.py
- source: ../../../../../ote/tools/compress.py
destination: compress.py
- source: ../../../../../ote
destination: packages/ote
- source: ../../requirements.txt
destination: requirements.txt
dataset_requirements:
classes: [person, bicycle, car, motorcycle, airplane, bus, train, truck, boat,
traffic light, fire hydrant, stop sign, parking meter, bench, bird, cat, dog, horse,
sheep, cow, elephant, bear, zebra, giraffe, backpack, umbrella, handbag, tie,
suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove,
skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork,
knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot, hot dog,
pizza, donut, cake, chair, couch, potted plant, bed, dining table, toilet, tv,
laptop, mouse, remote, keyboard, cell phone, microwave, oven, toaster, sink, refrigerator,
book, clock, vase, scissors, teddy bear, hair drier, toothbrush]
max_nodes: 1
training_target:
- GPU
inference_target:
- CPU
hyper_parameters:
basic:
batch_size: 16
base_learning_rate: 0.02
epochs: 36
output_format:
onnx:
default: true
openvino:
default: true
input_format: BGR
optimisations:
nncf_quantization:
config: compression_config.json
default: false
metrics:
- display_name: Bbox AP @ [IoU=0.50:0.95]
key: ap
unit: '%'
value: 40.8
- display_name: Segm AP @ [IoU=0.50:0.95]
key: ap
unit: '%'
value: 36.9
- display_name: Size
key: size
unit: Mp
value: 47.58
- display_name: Complexity
key: complexity
unit: GFLOPs
value: 423.02
gpu_num: 8
config: model.py
tensorboard: true
estimated_batch_time: -1