diff --git a/docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_RetinaNet_From_Tensorflow.md b/docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_RetinaNet_From_Tensorflow.md new file mode 100644 index 00000000000000..f02d50499fd857 --- /dev/null +++ b/docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_RetinaNet_From_Tensorflow.md @@ -0,0 +1,15 @@ +# Converting RetinaNet Model from TensorFlow* to the Intermediate Representation {#openvino_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_RetinaNet_From_Tensorflow} + +This tutorial explains how to convert RetinaNet model to the Intermediate Representation (IR). + +[Public RetinaNet model](https://github.com/fizyr/keras-retinanet) does not contain pretrained TensorFlow\* weights. +To convert this model to the TensorFlow\* format, you can use [Reproduce Keras* to TensorFlow* Conversion tutorial](https://docs.openvinotoolkit.org/latest/omz_models_model_retinanet_tf.html). + +After you convert the model to TensorFlow* format, run the Model Optimizer command below: +```sh +python mo.py --input "input_1[1 1333 1333 3]" --input_model retinanet_resnet50_coco_best_v2.1.0.pb --data_type FP32 --transformations_config ./extensions/front/tf/retinanet.json +``` + +Where `transformations_config` command-line parameter specifies the configuration json file containing model conversion hints for the Model Optimizer. +The json file contains some parameters that need to be changed if you train the model yourself. It also contains information on how to match endpoints +to replace the subgraph nodes. After the model is converted to IR, the output nodes will be replaced with DetectionOutput layer. diff --git a/docs/doxygen/ie_docs.xml b/docs/doxygen/ie_docs.xml index 19a87a1e11e97c..7ed795ea5c3720 100644 --- a/docs/doxygen/ie_docs.xml +++ b/docs/doxygen/ie_docs.xml @@ -34,6 +34,7 @@ limitations under the License. +