diff --git a/src/plugins/intel_gna/src/gna_graph_compiler.cpp b/src/plugins/intel_gna/src/gna_graph_compiler.cpp index cb86a83d38f5af..a3b7939677a57f 100644 --- a/src/plugins/intel_gna/src/gna_graph_compiler.cpp +++ b/src/plugins/intel_gna/src/gna_graph_compiler.cpp @@ -2404,22 +2404,15 @@ void GNAGraphCompiler::connectOutput(InferenceEngine::CNNLayerPtr layer, void* p log::debug() << "Connecting output " << layer->name << " ...\n"; // in case of Memory Layer it's input allocated in meminput layer if (layer->outData.size() == 1) { - for (int j = 0; j != static_cast(getInputTo(layer->outData.front()).size()); j++) { - auto isNonFunctional = [](CNNLayerPtr l) { - return LayerInfo(l).isNonFunctional(); - }; - - if (!CNNNetHasNextLayerSkipCertain(layer, 0, j, isNonFunctional)) { - continue; - } - auto nextLayer = CNNNetGetNextLayerSkipCertain(layer, 0, j, isNonFunctional); + auto isNonFunctional = [](CNNLayerPtr l) { + return LayerInfo(l).isNonFunctional(); + }; - if (!nextLayer.first) { - log::debug() << "for layer: " << layer->name << "outData[0] has non functional connection at " << j; - } + auto next_layers = CNNNetGetAllNextLayersSkipCertain(layer, -1, isNonFunctional); + for (auto& next_layer : next_layers) { auto nextMemoryLayerIt = std::find_if(begin(memory_connection), end(memory_connection), [&](MemoryConnection::value_type& comp) { - return comp.second.getOutput()->name == nextLayer.first->name; + return comp.second.getOutput()->name == next_layer->name; }); if (nextMemoryLayerIt != memory_connection.end()) { auto& nextMemoryLayer = nextMemoryLayerIt->second;