From 4937e9b4fd5fa825340e51d3ed0aa2242a235d4b Mon Sep 17 00:00:00 2001 From: Karol Blaszczak <karol.blaszczak@intel.com> Date: Fri, 22 Mar 2024 14:54:53 +0100 Subject: [PATCH] [DOCS] improve legacy section formatting (#23514) port: https://github.com/openvinotoolkit/openvino/pull/23512 --- .../documentation/legacy-features.rst | 102 +++++++++--------- .../openvino-workflow/model-preparation.rst | 2 +- 2 files changed, 52 insertions(+), 52 deletions(-) diff --git a/docs/articles_en/documentation/legacy-features.rst b/docs/articles_en/documentation/legacy-features.rst index 4cae8ebd3fd39a..dec5a70cd2b56f 100644 --- a/docs/articles_en/documentation/legacy-features.rst +++ b/docs/articles_en/documentation/legacy-features.rst @@ -1,8 +1,8 @@ -.. {#openvino_legacy_features} - Legacy Features and Components ============================== +.. meta:: + :description: A list of deprecated OpenVINO™ components. .. toctree:: :maxdepth: 1 @@ -60,66 +60,66 @@ offering. | :doc:`See the Open Model ZOO documentation <legacy-features/model-zoo>` | `Check the OMZ GitHub project <https://github.com/openvinotoolkit/open_model_zoo>`__ -| **Apache MXNet, Caffe, and Kaldi model formats** -| *New solution:* conversion to ONNX via external tools -| *Old solution:* model support discontinued with OpenVINO 2024.0 -| -| `The last version supporting Apache MXNet, Caffe, and Kaldi model formats <https://docs.openvino.ai/2023.3/mxnet_caffe_kaldi.html>`__ -| :doc:`See the currently supported frameworks <../openvino-workflow/model-preparation>` -| **Post-training Optimization Tool (POT)** -| *New solution:* NNCF extended in OpenVINO 2023.0 -| *Old solution:* POT discontinued with OpenVINO 2024.0 -| -| Neural Network Compression Framework (NNCF) now offers the same functionality as POT, - apart from its original feature set. +Discontinued: +############# -| :doc:`See how to use NNCF for model optimization <../openvino-workflow/model-optimization>` -| `Check the NNCF GitHub project, including documentation <https://github.com/openvinotoolkit/nncf>`__ +.. dropdown:: Apache MXNet, Caffe, and Kaldi model formats -| **Inference API 1.0** -| *New solution:* API 2.0 launched in OpenVINO 2022.1 -| *Old solution:* discontinued with OpenVINO 2024.0 -| -| `The last version supporting API 1.0 <https://docs.openvino.ai/2023.2/openvino_2_0_transition_guide.html>`__ + | *New solution:* conversion to ONNX via external tools + | *Old solution:* model support discontinued with OpenVINO 2024.0 + | `The last version supporting Apache MXNet, Caffe, and Kaldi model formats <https://docs.openvino.ai/2023.3/mxnet_caffe_kaldi.html>`__ + | :doc:`See the currently supported frameworks <../openvino-workflow/model-preparation>` -| **Compile tool** -| *New solution:* the tool is no longer needed -| *Old solution:* deprecated in OpenVINO 2023.0 -| -| If you need to compile a model for inference on a specific device, use the following script: +.. dropdown:: Post-training Optimization Tool (POT) -.. tab-set:: + | *New solution:* Neural Network Compression Framework (NNCF) now offers the same functionality + | *Old solution:* POT discontinued with OpenVINO 2024.0 + | :doc:`See how to use NNCF for model optimization <../openvino-workflow/model-optimization>` + | `Check the NNCF GitHub project, including documentation <https://github.com/openvinotoolkit/nncf>`__ - .. tab-item:: Python - :sync: py +.. dropdown:: Inference API 1.0 - .. doxygensnippet:: docs/snippets/export_compiled_model.py - :language: python - :fragment: [export_compiled_model] + | *New solution:* API 2.0 launched in OpenVINO 2022.1 + | *Old solution:* discontinued with OpenVINO 2024.0 + | `The last version supporting API 1.0 <https://docs.openvino.ai/2023.2/openvino_2_0_transition_guide.html>`__ - .. tab-item:: C++ - :sync: cpp +.. dropdown:: Compile tool - .. doxygensnippet:: docs/snippets/export_compiled_model.cpp - :language: cpp - :fragment: [export_compiled_model] + | *New solution:* the tool is no longer needed + | *Old solution:* discontinued with OpenVINO 2023.0 + | If you need to compile a model for inference on a specific device, use the following script: + .. tab-set:: -| **DL Workbench** -| *New solution:* DevCloud version -| *Old solution:* local distribution discontinued in OpenVINO 2022.3 -| -| The stand-alone version of DL Workbench, a GUI tool for previewing and benchmarking - deep learning models, has been discontinued. You can use its cloud version: -| `Intel® Developer Cloud for the Edge <https://www.intel.com/content/www/us/en/developer/tools/devcloud/edge/overview.html>`__. + .. tab-item:: Python + :sync: py -| **OpenVINO™ integration with TensorFlow (OVTF)** -| *New solution:* Direct model support and OpenVINO Converter (OVC) -| *Old solution:* discontinued in OpenVINO 2023.0 -| -| OpenVINO™ Integration with TensorFlow is longer supported, as OpenVINO now features a - native TensorFlow support, significantly enhancing user experience with no need for - explicit model conversion. + .. doxygensnippet:: docs/snippets/export_compiled_model.py + :language: python + :fragment: [export_compiled_model] + + .. tab-item:: C++ + :sync: cpp + + .. doxygensnippet:: docs/snippets/export_compiled_model.cpp + :language: cpp + :fragment: [export_compiled_model] + +.. dropdown:: DL Workbench + + | *New solution:* DevCloud version + | *Old solution:* local distribution discontinued in OpenVINO 2022.3 + | The stand-alone version of DL Workbench, a GUI tool for previewing and benchmarking + deep learning models, has been discontinued. You can use its cloud version: + | `Intel® Developer Cloud for the Edge <https://www.intel.com/content/www/us/en/developer/tools/devcloud/edge/overview.html>`__. + +.. dropdown:: TensorFlow integration (OVTF) + + | *New solution:* Direct model support and OpenVINO Converter (OVC) + | *Old solution:* discontinued in OpenVINO 2023.0 + | + | OpenVINO now features a native TensorFlow support, with no need for explicit model + conversion. diff --git a/docs/articles_en/openvino-workflow/model-preparation.rst b/docs/articles_en/openvino-workflow/model-preparation.rst index b408bb1e09c78a..64632fc10f591a 100644 --- a/docs/articles_en/openvino-workflow/model-preparation.rst +++ b/docs/articles_en/openvino-workflow/model-preparation.rst @@ -27,7 +27,7 @@ OpenVINO supports the following model formats: * OpenVINO IR. The easiest way to obtain a model is to download it from an online database, such as -`TensorFlow Hub <https://tfhub.dev/>`__, `Hugging Face <https://huggingface.co/>`__, and +`Kaggle <https://www.kaggle.com/models>`__, `Hugging Face <https://huggingface.co/>`__, and `Torchvision models <https://pytorch.org/hub/>`__. Now you have two options: * Skip model conversion and :doc:`run inference <running-inference/integrate-openvino-with-your-application>`