diff --git a/inference-engine/src/mkldnn_plugin/nodes/mkldnn_strided_slice_node.cpp b/inference-engine/src/mkldnn_plugin/nodes/mkldnn_strided_slice_node.cpp index e476ef37d35b38..d06080a904c5d2 100644 --- a/inference-engine/src/mkldnn_plugin/nodes/mkldnn_strided_slice_node.cpp +++ b/inference-engine/src/mkldnn_plugin/nodes/mkldnn_strided_slice_node.cpp @@ -34,8 +34,8 @@ void MKLDNNStridedSliceNode::getSupportedDescriptors() { if (stridedSliceLayer->insData[DATA_ID].lock() == nullptr) THROW_ERROR << "has nullable input data"; - SizeVector srcDims = stridedSliceLayer->insData[DATA_ID].lock()->getTensorDesc().getDims(); - SizeVector dstDims = stridedSliceLayer->outData[0]->getTensorDesc().getDims(); + const SizeVector srcDims = stridedSliceLayer->insData[DATA_ID].lock()->getTensorDesc().getDims(); + const SizeVector dstDims = stridedSliceLayer->outData[0]->getTensorDesc().getDims(); if (getParentEdges().size() < 3) THROW_ERROR << "has incorrect number of input edges"; @@ -95,12 +95,12 @@ void MKLDNNStridedSliceNode::getSupportedDescriptors() { int newAxis = 0; for (auto na : newAxisMask) newAxis += na; - params.maxDims = srcDims.size() + newAxis; + size_t maxDims = srcDims.size() + newAxis; int shrinkAxis = 0; for (auto sa : shrinkAxisMask) shrinkAxis += sa; - params.equalDims = srcDims.size() == params.maxDims && shrinkAxis == 0; + params.equalDims = srcDims.size() == maxDims && shrinkAxis == 0; auto fillingInParameters = [&](std::vector& parameter, const size_t type, const size_t size, const int bit) { auto blob = dynamic_cast*>(getParentEdgesAtPort(type)[0]->getParent()->getCnnLayer()->blobs["custom"].get()); @@ -232,9 +232,9 @@ void MKLDNNStridedSliceNode::createPrimitive() { params.dstStrides = dstBlockingDesc.getStrides(); params.dataSize = getSelectedPrimitiveDescriptor()->getConfig().inConfs[DATA_ID].desc.getPrecision().size(); - const bool isBlockedLayout = getParentEdgeAt(DATA_ID)->getMemory().GetDesc().isBlockedCFormat(); const bool isPerChannelLayout = getParentEdgeAt(DATA_ID)->getMemory().GetDesc().isTailCFormat(); - params.maxDims += static_cast(isBlockedLayout); + const bool isBlockedLayout = getParentEdgeAt(DATA_ID)->getMemory().GetDesc().isBlockedCFormat(); + size_t realNDims = params.dstDims.size(); if (isBlockedLayout) { const size_t blk = params.srcDims.back(); @@ -390,7 +390,6 @@ void MKLDNNStridedSliceNode::createPrimitive() { params.srcStrides[indexes[idx - 1]] /= params.srcDims[jdx]; begin[indexes[idx - 1]] *= params.dstDims[jdx]; - end[indexes[idx - 1]] *= params.dstDims[jdx]; } const size_t beginShift = indexes[idx - 1] + 1; const size_t endShift = indexes[idx] + 1; @@ -401,7 +400,6 @@ void MKLDNNStridedSliceNode::createPrimitive() { params.srcStrides.erase(params.srcStrides.begin() + beginShift, params.srcStrides.begin() + endShift); begin.erase(begin.begin() + beginShift, begin.begin() + endShift); - end.erase(end.begin() + beginShift, end.begin() + endShift); stride.erase(stride.begin() + beginShift, stride.begin() + endShift); } } @@ -410,17 +408,15 @@ void MKLDNNStridedSliceNode::createPrimitive() { params.lastDstDim = nGluingLastDims * params.dataSize; params.nDimsForWork = params.dstDims.size() - static_cast(vLastDim); - if (params.nDimsForWork == 1 && params.maxDims > 2) { + if (params.nDimsForWork == 1 && realNDims > 2) { const size_t realSrcDim = newSrcDims[secondDim.first]; const size_t realDstDim = newDstDims[secondDim.first]; params.dstStrides.insert(params.dstStrides.begin() + 1, params.dstStrides[0] / realDstDim); params.srcStrides.insert(params.srcStrides.begin() + 1, params.srcStrides[0] / realSrcDim); - for (size_t idx = secondDim.first + 1; idx < secondDim.second; idx++) { + for (size_t idx = secondDim.first + 1; idx < secondDim.second; idx++) begin[1] /= newDstDims[idx]; - end[1] /= newDstDims[idx]; - } const size_t maxThreads = dnnl_get_max_threads(); if (params.dstDims[0] < maxThreads) { @@ -429,10 +425,10 @@ void MKLDNNStridedSliceNode::createPrimitive() { params.dstDims.insert(params.dstDims.begin() + 1, realDstDim); params.srcDims.insert(params.srcDims.begin() + 1, realSrcDim); } - } - if (params.nDimsForWork == 1 && params.dstDims.size() > 2) - params.lastDstDim /= newDstDims[secondDim.first]; + if (params.dstDims.size() > 2) + params.lastDstDim /= newDstDims[secondDim.first]; + } } void MKLDNNStridedSliceNode::execute(mkldnn::stream strm) { diff --git a/inference-engine/src/mkldnn_plugin/nodes/mkldnn_strided_slice_node.h b/inference-engine/src/mkldnn_plugin/nodes/mkldnn_strided_slice_node.h index 31595207d25a27..be7279baff75fd 100644 --- a/inference-engine/src/mkldnn_plugin/nodes/mkldnn_strided_slice_node.h +++ b/inference-engine/src/mkldnn_plugin/nodes/mkldnn_strided_slice_node.h @@ -51,7 +51,6 @@ class MKLDNNStridedSliceNode : public MKLDNNNode { InferenceEngine::SizeVector dstDims; InferenceEngine::SizeVector srcStrides; InferenceEngine::SizeVector dstStrides; - size_t maxDims; size_t nDimsForWork; size_t workAmount; size_t lastDstDim; diff --git a/inference-engine/tests/functional/plugin/cpu/shared_tests_instances/single_layer_tests/strided_slice.cpp b/inference-engine/tests/functional/plugin/cpu/shared_tests_instances/single_layer_tests/strided_slice.cpp index 0e4ab5b7da6729..858277c82d2e8b 100644 --- a/inference-engine/tests/functional/plugin/cpu/shared_tests_instances/single_layer_tests/strided_slice.cpp +++ b/inference-engine/tests/functional/plugin/cpu/shared_tests_instances/single_layer_tests/strided_slice.cpp @@ -111,4 +111,4 @@ INSTANTIATE_TEST_CASE_P( ::testing::Values(std::map())), StridedSliceLayerTest::getTestCaseName); -} // namespace \ No newline at end of file +} // namespace