As mentioned in GPU plugin structure, kernels for GPU plugin are located in src/plugins/intel_gpu/src/kernel_selector
folder.
For each operation, there are usually multiple kernels that can support different parameters and/or are optimized for different scenarios.
Each operation has 3 major entities in kernel selector:
- Operation specific
kernel_selector
instance - Operation parameters descriptor
- Kernels itself with a set of heuristics inside for optimal selection
For each operation, you create kernel_selector
class derived from kernel_selector_base
. Basically, this class is needed to specify available kernels
for a given operation. Each kernel selector is used as a singleton. For example:
class mvn_kernel_selector : public kernel_selector_base {
public:
static mvn_kernel_selector& Instance() {
static mvn_kernel_selector instance_;
return instance_;
}
mvn_kernel_selector();
KernelsData GetBestKernels(const Params& params, const optional_params& options) const override;
}
// The list of available kernels is usually specified in kernel_selector c-tor using `Attach` method whith creates instance of each type
// and append it to implementations list.
// In this case we have 3 available kernels for MVN operation. Kernels might have different priorities and support only subset of operation parameters
// E.g. MVNKernel_b_fs_yx_fsv16_imad supports only `fsv16` blocked layouts and INT8/UINT8 input data types
mvn_kernel_selector::mvn_kernel_selector() {
Attach<MVNKernelRef>();
Attach<MVNKernelBfyxOpt>();
Attach<MVNKernel_b_fs_yx_fsv16_imad>();
}
// This method is used to get the optimal kernel for given parameters
// There are 2 base methods to pick optimal kernels: `GetNaiveBestKernel` and `GetAutoTuneBestKernel`
// If kernel supports auto tuning, then it uses `GetAutoTuneBestKernel`, otherwise, it uses `GetNaiveBestKernel`
// parameterized with `KernelType` which specifies the operation type which is implemented by the specific kernel selector
KernelsData mvn_kernel_selector::GetBestKernels(const Params& params, const optional_params& options) const {
return GetNaiveBestKernel(params, options, KernelType::MVN);
}
The caller code looks as follows:
// Get static instance of the kernel_selector
auto& kernel_selector = kernel_selector::mvn_kernel_selector::Instance();
// Run some heuristics to pick the best mvn kernel for given `mvn_params`
auto best_kernels = kernel_selector.GetBestKernels(mvn_params, mvn_optional_params);
The parameters of operation for kernel_selector
are defined in corresponding ${op_name}_params
class which is derived from base_params
. For example:
struct mvn_params : public base_params {
mvn_params() : base_params(KernelType::MVN) {}
MVNMode mvnMode = MVNMode::WITHIN_CHANNELS;
bool mvnNormalizeVariance = true;
float epsilon = 1e-10f;
virtual ParamsKey GetParamsKey() const {
ParamsKey k = base_params::GetParamsKey();
k.EnableMVNMode(mvnMode);
if (mvnNormalizeVariance)
k.EnableMVNNormalizeVariance();
return k;
}
};
The derived class should parameterize base class with a specific KernelType
and add operation-specific parameters. The only method that must be implemented
is GetParamsKey()
which is used as a quick check for kernels applicability for current parameters. In other words, you take a ParamsKey
object calculated for input
operation parameters and a ParamsKey
object for each kernel. Then, you can compare them and discard the kernels that do not support current parameters.
ParamsKey
is implemented as a set of bit masks, so the applicability check is quite simple:
const ParamsKey implKey = some_implementation->GetSupportedKey();
if (!implKey.Support(paramsKey))
// Do something
// Support() method do something like follows for each internal bit mask:
if (!((implKey.mask & paramsKey.mask) == paramsKey.mask))
return false;
Each kernel must specify the following things:
- Input parameters checks
GetSupportedKey()
method implementation, which returnsParamsKey
object for current implementation.Validate()
method, that does more complex checks (optional).
- Dispatch data (global/local workgroup sizes, scheduling algorithm, etc.)
- Kernel name - must be passes to base class c-tor
- Kernel arguments specification - description of each argument in corresponding OpenCL™ kernel
- Additional JIT constants required for kernel - set of macro definitions that must be added to the kernel template to make full specialization for given params
- Supported fused operations (if any) - a list of supported operations that can be fused into the current kernel.
Key methods of each kernel implementation are as follows:
class MVNKernelRef : public MVNKernelBase {
public:
MVNKernelRef() : MVNKernelBase("mvn_gpu_ref") {} // mvn_gpu_ref is the name of the file with kernel template in cl_kernels/ folder without .cl extension
// Returns the kernel specified for input parameters if the implementation can process it
KernelsData GetKernelsData(const Params& params, const optional_params& options) const override;
// Returns `ParamsKey` for current implementation for quick applicability check
ParamsKey GetSupportedKey() const override;
protected:
// Specifies additional jit constants for kernel template specification
JitConstants GetJitConstants(const mvn_params& params, DispatchData dispatchData) const override;
// The list of supported fused operations
std::vector<FusedOpType> GetSupportedFusedOps() const override {
return {
FusedOpType::ACTIVATION,
FusedOpType::QUANTIZE,
FusedOpType::ELTWISE,
FusedOpType::SCALE
};
}
};