diff --git a/.github/workflows/llm_bench-python.yml b/.github/workflows/llm_bench-python.yml index b7318525a3..b99505ac95 100644 --- a/.github/workflows/llm_bench-python.yml +++ b/.github/workflows/llm_bench-python.yml @@ -82,6 +82,12 @@ jobs: run: | wget -O ./ov_models/soulcard.safetensors https://civitai.com/api/download/models/72591 python ./tools/llm_bench/benchmark.py -m ./ov_models/dreamlike-art-dreamlike-anime-1.0/FP16/ -pf ./tools/llm_bench/prompts/stable-diffusion.jsonl -d cpu -n 1 --genai --lora ./ov_models/soulcard.safetensors --lora_alphas 0.7 + - name: Test dolly-v2-7b and dolly-v2-3b in Speculative Deconding mode on Linux + run: | + huggingface-cli download OpenVINO/dolly-v2-3b-fp16-ov --local-dir ../ov_models/dolly-v2-3b-fp16-ov/FP16 + huggingface-cli download OpenVINO/dolly-v2-3b-int4-ov --local-dir ../ov_models/dolly-v2-3b-int4-ov/INT4 + python ./tools/llm_bench/benchmark.py -m ./ov_models/dolly-v2-3b-fp16-ov/FP16/ --draft_model ./ov_models/dolly-v2-3b-fp16-ov/INT4/ -p "What is openvino?" -d cpu --draft_device cpu -n 1 --genai --assistant_confidence_threshold 0.4 + python ./tools/llm_bench/benchmark.py -m ./ov_models/dolly-v2-3b-fp16-ov/FP16/ --draft_model ./ov_models/dolly-v2-3b-fp16-ov/INT4/ -p "What is openvino?" -d cpu --draft_device cpu -n 1 --genai --num_assistant_tokens 5 - name: Test whisper-tiny on Linux run: | GIT_LFS_SKIP_SMUDGE=1 git clone --depth 1 --branch main --single-branch https://huggingface.co/datasets/facebook/multilingual_librispeech diff --git a/tools/llm_bench/benchmark.py b/tools/llm_bench/benchmark.py index d0c71fec21..d652c8b48f 100644 --- a/tools/llm_bench/benchmark.py +++ b/tools/llm_bench/benchmark.py @@ -140,12 +140,14 @@ def get_argprser(): parser.add_argument('--lora_alphas', nargs='*', help='Alphas params for LoRA adapters.', required=False, default=[]) parser.add_argument("--use_cb", action="store_true", help="Use Continuous Batching inference mode") parser.add_argument("--cb_config", required=False, default=None, help="Path to file with Continuous Batching Scheduler settings or dict") - parser.add_argument("--draft_model", required=False, default=None, - help="Path to draft model folder including IR files for Speculative decoding generation.") - parser.add_argument("--draft_device", required=False, default='cpu', help="Inference device for Speculative decoding generation.") - parser.add_argument("--num_assistant_tokens", required=False, default=5, help="Config option num_assistant_tokens for Speculative decoding") - parser.add_argument("--assistant_confidence_threshold", required=False, default=0, - help="Config option assistant_confidence_threshold for Speculative decodin") + parser.add_argument("--draft_model", required=False, default=None, + help="Path to draft model folder including IR files for Speculative decoding generation") + parser.add_argument("--draft_device", required=False, default=None, help="Inference device for Speculative decoding of draft model") + parser.add_argument("--draft_cb_config", required=False, default=None, + help="Path to file with Continuous Batching Scheduler settings or dict for Speculative decoding of draft model") + parser.add_argument("--num_assistant_tokens", required=False, default=None, help="Config option num_assistant_tokens for Speculative decoding") + parser.add_argument("--assistant_confidence_threshold", required=False, default=None, + help="Config option assistant_confidence_threshold for Speculative decoding") parser.add_argument( '--end_token_stopping', action='store_true', diff --git a/tools/llm_bench/llm_bench_utils/model_utils.py b/tools/llm_bench/llm_bench_utils/model_utils.py index 151d77a643..917596b3d2 100644 --- a/tools/llm_bench/llm_bench_utils/model_utils.py +++ b/tools/llm_bench/llm_bench_utils/model_utils.py @@ -143,8 +143,6 @@ def analyze_args(args): model_args["cb_config"] = cb_config model_args['draft_model'] = args.draft_model model_args['draft_device'] = args.draft_device - if (args.num_assistant_tokens > 0 and args.assistant_confidence_threshold > 0): - raise RuntimeError("Parameters `assistant_confidence_threshold` and `num_assistant_tokens` are mutually exclusive") model_args['num_assistant_tokens'] = args.num_assistant_tokens model_args['assistant_confidence_threshold'] = args.assistant_confidence_threshold return model_path, model_framework, model_args, model_name diff --git a/tools/llm_bench/llm_bench_utils/ov_utils.py b/tools/llm_bench/llm_bench_utils/ov_utils.py index 60d04c56eb..983d53d203 100644 --- a/tools/llm_bench/llm_bench_utils/ov_utils.py +++ b/tools/llm_bench/llm_bench_utils/ov_utils.py @@ -232,8 +232,8 @@ def create_genai_text_gen_model(model_path, device, ov_config, **kwargs): if not Path(draft_model_path).exists(): raise RuntimeError(f'==Failure ==: draft model by path:{draft_model_path} is not exists') log.info("Speculative Decoding is activated") - - ov_config['draft_model'] = openvino_genai.draft_model(draft_model_path, kwargs['draft_device'].upper()) + draft_device = kwargs.get('draft_device', None) or device + ov_config['draft_model'] = openvino_genai.draft_model(draft_model_path, draft_device.upper()) adapter_config = get_lora_config(kwargs.get("lora", None), kwargs.get("lora_alphas", [])) if adapter_config: diff --git a/tools/llm_bench/task/text_generation.py b/tools/llm_bench/task/text_generation.py index 1ff0417214..029bcdf16d 100644 --- a/tools/llm_bench/task/text_generation.py +++ b/tools/llm_bench/task/text_generation.py @@ -199,11 +199,14 @@ def run_text_generation_genai(input_text, num, model, tokenizer, args, iter_data gen_config.num_beams = args["num_beams"] gen_config.do_sample = False if args.get('draft_model', ''): - gen_config.num_assistant_tokens = args['num_assistant_tokens'] - gen_config.assistant_confidence_threshold = args['assistant_confidence_threshold'] - log.info("Speculative decoding config: ") - log.info(f" num_assistant_tokens {gen_config.num_assistant_tokens}") - log.info(f" assistant_confidence_threshold {gen_config.assistant_confidence_threshold}") + config_info = "Speculative decoding config: " + if args.get('num_assistant_tokens', None): + gen_config.num_assistant_tokens = args['num_assistant_tokens'] + config_info += f" num_assistant_tokens {gen_config.num_assistant_tokens}" + if args.get('assistant_confidence_threshold', None): + gen_config.assistant_confidence_threshold = args['assistant_confidence_threshold'] + config_info += f" assistant_confidence_threshold {gen_config.assistant_confidence_threshold}" + log.info(config_info) start = time.perf_counter() generation_result = model.generate(input_text_list, gen_config) end = time.perf_counter() @@ -328,11 +331,14 @@ def run_text_generation_genai_with_stream(input_text, num, model, tokenizer, arg gen_config.num_beams = args["num_beams"] gen_config.do_sample = False if args.get('draft_model', ''): - gen_config.num_assistant_tokens = args['num_assistant_tokens'] - gen_config.assistant_confidence_threshold = args['assistant_confidence_threshold'] - log.info("Speculative decoding config: ") - log.info(f" num_assistant_tokens {gen_config.num_assistant_tokens}") - log.info(f" assistant_confidence_threshold {gen_config.assistant_confidence_threshold}") + config_info = "Speculative decoding config: " + if args.get("num_assistant_tokens", None): + gen_config.num_assistant_tokens = int(args["num_assistant_tokens"]) + config_info += f'num_assistant_tokens {args["num_assistant_tokens"]}' + if args.get("assistant_confidence_threshold", None): + gen_config.assistant_confidence_threshold = float(args["assistant_confidence_threshold"]) + config_info += f'assistant_confidence_threshold {args["assistant_confidence_threshold"]}' + log.info(config_info) start = time.perf_counter() generated_tokens = model.generate(input_data, gen_config, streamer=streamer).tokens end = time.perf_counter()