diff --git a/Dockerfile b/Dockerfile deleted file mode 100644 index b73d907b87..0000000000 --- a/Dockerfile +++ /dev/null @@ -1,38 +0,0 @@ -FROM ubuntu:22.04 - -ARG JOBS -WORKDIR /workspace -RUN apt-get update -y && apt-get install -y python3-pip python3-venv git - -# Install OpenVINO -RUN git clone --branch master https://github.com/openvinotoolkit/openvino.git && \ - cd /workspace/openvino && \ - git submodule update --init -- /workspace/openvino/thirdparty/xbyak /workspace/openvino/thirdparty/pugixml /workspace/openvino/thirdparty/open_model_zoo \ - /workspace/openvino/thirdparty/protobuf /workspace/openvino/thirdparty/snappy /workspace/openvino/thirdparty/telemetry /workspace/openvino/src/plugins/intel_cpu/thirdparty/mlas \ - /workspace/openvino/src/plugins/intel_cpu/thirdparty/onednn /workspace/openvino/src/bindings/python/thirdparty/pybind11 && cd - - -RUN /workspace/openvino/install_build_dependencies.sh -RUN python3 -m pip install -r /workspace/openvino/src/bindings/python/wheel/requirements-dev.txt -RUN cmake -DENABLE_PYTHON=ON -DENABLE_PYTHON_PACKAGING=ON -DENABLE_WHEEL=ON -DENABLE_CPPLINT=OFF -DENABLE_SAMPLES=OFF -DENABLE_INTEL_GPU=OFF \ - -DENABLE_INTEL_NPU=OFF -DENABLE_TEMPLATE=OFF -DENABLE_AUTO=OFF -DENABLE_HETERO=OFF -DENABLE_AUTO_BATCH=OFF -DENABLE_OV_TF_FRONTEND=ON -DENABLE_OV_ONNX_FRONTEND=OFF \ - -DENABLE_OV_TF_LITE_FRONTEND=OFF -DENABLE_OV_PADDLE_FRONTEND=OFF -S /workspace/openvino -B /workspace/openvino_build -RUN cmake --build /workspace/openvino_build --parallel $JOBS -RUN cmake -P /workspace/openvino_build/cmake_install.cmake -RUN python3 -m pip install /workspace/openvino_build/wheels/openvino-2024* -ENV OpenVINO_DIR=/workspace/openvino_build - -# Download dataset -RUN wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json - -# Build GenAI library with dependencies -RUN git clone https://github.com/Wovchena/openvino.genai-public.git -b reuse-Tokenizer openvino.genai && \ - cd /workspace/openvino.genai/thirdparty && git submodule update --remote --init && \ - mkdir /workspace/openvino.genai/build && cd /workspace/openvino.genai/build && \ - cmake -DCMAKE_BUILD_TYPE=Release .. && \ - make -j${JOBS} - -# Install test dependencies -RUN python3 -m pip install --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly/ /workspace/openvino.genai/thirdparty/openvino_tokenizers -RUN PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu" python3 -m pip install -r /workspace/openvino.genai/tests/python_tests/continuous_batching/requirements.txt -ENV PYTHONPATH=/workspace/openvino.genai/build/ -ENV LD_LIBRARY_PATH=/workspace/openvino.genai/build/ diff --git a/samples/CMakeLists.txt b/samples/CMakeLists.txt index 0839d58428..5339817c1f 100644 --- a/samples/CMakeLists.txt +++ b/samples/CMakeLists.txt @@ -10,6 +10,7 @@ add_subdirectory(cpp/greedy_causal_lm) add_subdirectory(cpp/multinomial_causal_lm) add_subdirectory(cpp/prompt_lookup_decoding_lm) add_subdirectory(cpp/speculative_decoding_lm) +add_subdirectory(cpp/benchmark_genai) install(FILES requirements.txt DESTINATION samples COMPONENT cpp_samples_genai) diff --git a/samples/cpp/benchmark_genai/CMakeLists.txt b/samples/cpp/benchmark_genai/CMakeLists.txt new file mode 100644 index 0000000000..5443439de5 --- /dev/null +++ b/samples/cpp/benchmark_genai/CMakeLists.txt @@ -0,0 +1,24 @@ +# Copyright (C) 2023-2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + + +find_package(OpenVINOGenAI REQUIRED PATHS + "${CMAKE_BINARY_DIR}" # Reuse the package from the build. + ${OpenVINO_DIR} # GenAI may be installed alogside OpenVINO. +) + +FetchContent_Declare(cxxopts + URL https://github.com/jarro2783/cxxopts/archive/refs/tags/v3.1.1.tar.gz + URL_HASH SHA256=523175f792eb0ff04f9e653c90746c12655f10cb70f1d5e6d6d9491420298a08) +FetchContent_MakeAvailable(cxxopts) + +add_executable(benchmark_genai benchmark_genai.cpp) +target_link_libraries(benchmark_genai PRIVATE openvino::genai cxxopts::cxxopts) +set_target_properties(benchmark_genai PROPERTIES + COMPILE_PDB_NAME benchmark_genai + # Ensure out of box LC_RPATH on macOS with SIP + INSTALL_RPATH_USE_LINK_PATH ON) +install(TARGETS benchmark_genai + RUNTIME DESTINATION samples_bin/ + COMPONENT samples_bin + EXCLUDE_FROM_ALL) diff --git a/samples/cpp/benchmark_genai/README.md b/samples/cpp/benchmark_genai/README.md new file mode 100644 index 0000000000..616bb6a36d --- /dev/null +++ b/samples/cpp/benchmark_genai/README.md @@ -0,0 +1,47 @@ +# LLMs benchmarking sample + +This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics. + +## Download and convert the model and tokenizers + +The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. + +It's not required to install [../../requirements.txt](../../requirements.txt) for deployment if the model has already been exported. + +```sh +pip install --upgrade-strategy eager -r ../../requirements.txt +optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 +``` + +## Usage + +```sh +benchmark_vanilla_genai [OPTIONS] +``` + +### Options + +- `-m, --model`: Path to the model and tokenizers base directory. +- `-p, --prompt` (default: `"The Sky is blue because"`): The prompt to generate text. +- `-nw, --num_warmup` (default: `1`): Number of warmup iterations. +- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations. +- `-n, --num_iter` (default: `3`): Number of iterations. +- `-d, --device` (default: `"CPU"`): Device to run the model on. + +### Output: + +``` +benchmark_vanilla_genai -m TinyLlama-1.1B-Chat-v1.0 -n 10 +``` + +``` +Load time: 3405.69 ms +Generate time: 1430.77 ± 3.04 ms +Tokenization time: 0.51 ± 0.02 ms +Detokenization time: 0.37 ± 0.01 ms +TTFT: 81.60 ± 0.54 ms +TPOT: 71.52 ± 2.72 ms +Throughput tokens/s: 13.98 ± 0.53 +``` + +For more information how performance metrics are calculated please follow [performance-metrics tutorial](../../../src/README.md#performance-metrics). diff --git a/samples/cpp/benchmark_genai/benchmark_genai.cpp b/samples/cpp/benchmark_genai/benchmark_genai.cpp new file mode 100644 index 0000000000..287d6b379a --- /dev/null +++ b/samples/cpp/benchmark_genai/benchmark_genai.cpp @@ -0,0 +1,70 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "openvino/genai/llm_pipeline.hpp" +#include + +int main(int argc, char* argv[]) try { + cxxopts::Options options("benchmark_vanilla_genai", "Help command"); + + options.add_options() + ("m,model", "Path to model and tokenizers base directory", cxxopts::value()->default_value(".")) + ("p,prompt", "Prompt", cxxopts::value()->default_value("The Sky is blue because")) + ("nw,num_warmup", "Number of warmup iterations", cxxopts::value()->default_value(std::to_string(1))) + ("n,num_iter", "Number of iterations", cxxopts::value()->default_value(std::to_string(3))) + ("mt,max_new_tokens", "Maximal number of new tokens", cxxopts::value()->default_value(std::to_string(20))) + ("d,device", "device", cxxopts::value()->default_value("CPU")) + ("h,help", "Print usage"); + + cxxopts::ParseResult result; + try { + result = options.parse(argc, argv); + } catch (const cxxopts::exceptions::exception& e) { + std::cout << e.what() << "\n\n"; + std::cout << options.help() << std::endl; + return EXIT_FAILURE; + } + + if (result.count("help")) { + std::cout << options.help() << std::endl; + return EXIT_SUCCESS; + } + + std::string prompt = result["prompt"].as(); + const std::string model_path = result["model"].as(); + std::string device = result["device"].as(); + size_t num_warmup = result["num_warmup"].as(); + size_t num_iter = result["num_iter"].as(); + + ov::genai::GenerationConfig config; + config.max_new_tokens = result["max_new_tokens"].as(); + + ov::genai::LLMPipeline pipe(model_path, device); + + for (size_t i = 0; i < num_warmup; i++) + pipe.generate(prompt, config); + + ov::genai::DecodedResults res = pipe.generate(prompt, config); + ov::genai::PerfMetrics metrics = res.perf_metrics; + for (size_t i = 0; i < num_iter - 1; i++) { + res = pipe.generate(prompt, config); + metrics = metrics + res.perf_metrics; + } + + std::cout << std::fixed << std::setprecision(2); + std::cout << "Load time: " << metrics.get_load_time() << " ms" << std::endl; + std::cout << "Generate time: " << metrics.get_generate_duration().mean << " ± " << metrics.get_generate_duration().std << " ms" << std::endl; + std::cout << "Tokenization time: " << metrics.get_tokenization_duration().mean << " ± " << metrics.get_tokenization_duration().std << " ms" << std::endl; + std::cout << "Detokenization time: " << metrics.get_detokenization_duration().mean << " ± " << metrics.get_detokenization_duration().std << " ms" << std::endl; + std::cout << "TTFT: " << metrics.get_ttft().mean << " ± " << metrics.get_ttft().std << " ms" << std::endl; + std::cout << "TPOT: " << metrics.get_tpot().mean << " ± " << metrics.get_tpot().std << " ms/token " << std::endl; + std::cout << "Throughput: " << metrics.get_throughput().mean << " ± " << metrics.get_throughput().std << " tokens/s" << std::endl; + + return 0; +} catch (const std::exception& error) { + std::cerr << error.what() << '\n'; + return EXIT_FAILURE; +} catch (...) { + std::cerr << "Non-exception object thrown\n"; + return EXIT_FAILURE; +} diff --git a/samples/python/benchmark_genai/README.md b/samples/python/benchmark_genai/README.md new file mode 100644 index 0000000000..1ff9ef4305 --- /dev/null +++ b/samples/python/benchmark_genai/README.md @@ -0,0 +1,47 @@ +# LLMs benchmarking sample + +This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics. + +## Download and convert the model and tokenizers + +The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. + +It's not required to install [../../requirements.txt](../../requirements.txt) for deployment if the model has already been exported. + +```sh +pip install --upgrade-strategy eager -r ../../requirements.txt +optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 +``` + +## Usage + +```sh +python benchmark_vanilla_genai.py [OPTIONS] +``` + +### Options + +- `-m, --model`: Path to the model and tokenizers base directory. +- `-p, --prompt` (default: `"The Sky is blue because"`): The prompt to generate text. +- `-nw, --num_warmup` (default: `1`): Number of warmup iterations. +- `-n, --num_iter` (default: `3`): Number of iterations. +- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations. +- `-d, --device` (default: `"CPU"`): Device to run the model on. + +### Output: + +``` +python benchmark_vanilla_genai.py -m TinyLlama-1.1B-Chat-v1.0 -n 10 +``` + +``` +Load time: 3405.69 ms +Generate time: 1430.77 ± 3.04 ms +Tokenization time: 0.51 ± 0.02 ms +Detokenization time: 0.37 ± 0.01 ms +TTFT: 81.60 ± 0.54 ms +TPOT: 71.52 ± 2.72 ms +Throughput tokens/s: 13.98 ± 0.53 +``` + +For more information on how performance metrics are calculated, see [performance metrics readme](../../../src/README.md#performance-metrics). diff --git a/samples/python/benchmark_genai/benchmark_genai.py b/samples/python/benchmark_genai/benchmark_genai.py new file mode 100755 index 0000000000..9851483880 --- /dev/null +++ b/samples/python/benchmark_genai/benchmark_genai.py @@ -0,0 +1,49 @@ +# Copyright (C) 2023-2024 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +import argparse +import openvino_genai as ov_genai + +def main(): + parser = argparse.ArgumentParser(description="Help command") + parser.add_argument("-m", "--model", type=str, help="Path to model and tokenizers base directory") + parser.add_argument("-p", "--prompt", type=str, default="The Sky is blue because", help="Prompt") + parser.add_argument("-nw", "--num_warmup", type=int, default=1, help="Number of warmup iterations") + parser.add_argument("-n", "--num_iter", type=int, default=2, help="Number of iterations") + parser.add_argument("-mt", "--max_new_tokens", type=int, default=20, help="Maximal number of new tokens") + parser.add_argument("-d", "--device", type=str, default="CPU", help="Device") + + args = parser.parse_args() + + # Perf metrics is stored in DecodedResults. + # In order to get DecodedResults instead of a string input should be a list. + prompt = [args.prompt] + model_path = args.model + device = args.device + num_warmup = args.num_warmup + num_iter = args.num_iter + + config = ov_genai.GenerationConfig() + config.max_new_tokens = args.max_new_tokens + + pipe = ov_genai.LLMPipeline(model_path, device) + + for _ in range(num_warmup): + pipe.generate(prompt, config) + + res = pipe.generate(prompt, config) + perf_metrics = res.perf_metrics + for _ in range(num_iter - 1): + res = pipe.generate(prompt, config) + perf_metrics += res.perf_metrics + + print(f"Load time: {perf_metrics.get_load_time():.2f} ms") + print(f"Generate time: {perf_metrics.get_generate_duration().mean:.2f} ± {perf_metrics.get_generate_duration().std:.2f} ms") + print(f"Tokenization time: {perf_metrics.get_tokenization_duration().mean:.2f} ± {perf_metrics.get_tokenization_duration().std:.2f} ms") + print(f"Detokenization time: {perf_metrics.get_detokenization_duration().mean:.2f} ± {perf_metrics.get_detokenization_duration().std:.2f} ms") + print(f"TTFT: {perf_metrics.get_ttft().mean:.2f} ± {perf_metrics.get_ttft().std:.2f} ms") + print(f"TPOT: {perf_metrics.get_tpot().mean:.2f} ± {perf_metrics.get_tpot().std:.2f} ms") + print(f"Throughput : {perf_metrics.get_throughput().mean:.2f} ± {perf_metrics.get_throughput().std:.2f} tokens/s") + +if __name__ == "__main__": + main() diff --git a/src/README.md b/src/README.md index b3959520a8..58c5f6621e 100644 --- a/src/README.md +++ b/src/README.md @@ -210,6 +210,97 @@ int main(int argc, char* argv[]) { } ``` +### Performance Metrics + +`openvino_genai.PerfMetrics` (referred as `PerfMetrics` for simplicity) is a structure that holds performance metrics for each generate call. `PerfMetrics` holds fields with mean and standard deviations for the following metrics: +- Time To the First Token (TTFT), ms +- Time per Output Token (TPOT), ms/token +- Generate total duration, ms +- Tokenization duration, ms +- Detokenization duration, ms +- Throughput, tokens/s + +and: +- Load time, ms +- Number of generated tokens +- Number of tokens in the input prompt + +Performance metrics are stored either in the `DecodedResults` or `EncodedResults` `perf_metric` field. Additionally to the fields mentioned above, `PerfMetrics` has a member `raw_metrics` of type `openvino_genai.RawPerfMetrics` (referred to as `RawPerfMetrics` for simplicity) that contains raw values for the durations of each batch of new token generation, tokenization durations, detokenization durations, and more. These raw metrics are accessible if you wish to calculate your own statistical values such as median or percentiles. However, since mean and standard deviation values are usually sufficient, we will focus on `PerfMetrics`. + +```python +import openvino_genai as ov_genai +pipe = ov_genai.LLMPipeline(model_path, "CPU") +result = pipe.generate(["The Sun is yellow because"], max_new_tokens=20) +perf_metrics = result.perf_metrics + +print(f'Generate duration: {perf_metrics.get_generate_duration().mean:.2f}') +print(f'TTFT: {perf_metrics.get_ttft().mean:.2f} ms') +print(f'TPOT: {perf_metrics.get_tpot().mean:.2f} ms/token') +print(f'Throughput: {perf_metrics.get_throughput()get_.mean():.2f} tokens/s') +``` + +```cpp +#include "openvino/genai/llm_pipeline.hpp" +#include + +int main(int argc, char* argv[]) { + std::string model_path = argv[1]; + ov::genai::LLMPipeline pipe(model_path, "CPU"); + auto result = pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(20)); + auto perf_metrics = result.perf_metrics; + + std::cout << std::fixed << std::setprecision(2); + std::cout << "Generate duration: " << perf_metrics.get_generate_duration().mean << " ms" << std::endl; + std::cout << "TTFT: " << metrics.get_ttft().mean << " ms" << std::endl; + std::cout << "TPOT: " << metrics.get_tpot().mean << " ms/token " << std::endl; + std::cout << "Throughput: " << metrics.get_throughput().mean << " tokens/s" << std::endl; +} +``` +output: +```sh +mean_generate_duration: 76.28 +mean_ttft: 42.58 +mean_tpot 3.80 +``` + +>**Note**: If the input prompt is just a string, the generate function returns only a string without perf_metrics. To obtain perf_metrics, provide the prompt as a list with at least one element or call generate with encoded inputs. + +Several `perf_metrics` can be added to each other. In that case `raw_metrics` are concatenated and mean/std values are recalculated. This accumulates statistics from several `generate()` calls + +```cpp +#include "openvino/genai/llm_pipeline.hpp" +#include + +int main(int argc, char* argv[]) { + std::string model_path = argv[1]; + ov::genai::LLMPipeline pipe(model_path, "CPU"); + auto result_1 = pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(20)); + auto result_2 = pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(20)); + auto perf_metrics = result_1.perf_metrics + result_2.perf_metrics + + std::cout << std::fixed << std::setprecision(2); + std::cout << "Generate duration: " << perf_metrics.get_generate_duration().mean << " ms" << std::endl; + std::cout << "TTFT: " << metrics.get_ttft().mean << " ms" << std::endl; + std::cout << "TPOT: " << metrics.get_tpot().mean << " ms/token " << std::endl; + std::cout << "Throughput: " << metrics.get_throughput().mean << " tokens/s" << std::endl; +} +``` + +```python +import openvino_genai as ov_genai +pipe = ov_genai.LLMPipeline(model_path, "CPU") +res_1 = pipe.generate(["The Sun is yellow because"], max_new_tokens=20) +res_2 = pipe.generate(["Why Sky is blue because"], max_new_tokens=20) +perf_metrics = res_1.perf_metrics + res_2.perf_metrics + +print(f'Generate duration: {perf_metrics.get_generate_duration().mean:.2f}') +print(f'TTFT: {perf_metrics.get_ttft().mean:.2f} ms') +print(f'TPOT: {perf_metrics.get_tpot().mean:.2f} ms/token') +print(f'Throughput: {perf_metrics.get_throughput().mean:.2f} tokens/s') +``` + +For more examples of how metrics are used, please refer to the Python [benchmark_genai.py](https://github.com/openvinotoolkit/openvino.genai/tree/releases/2024/3/samples/python/benchmark_genai/README.md) and C++ [benchmark_genai](https://github.com/openvinotoolkit/openvino.genai/tree/releases/2024/3/samples/cpp/benchmark_genai/README.md) samples. + ## How It Works For information on how OpenVINO™ GenAI works, refer to the [How It Works Section](https://github.com/openvinotoolkit/openvino.genai/tree/releases/2024/3/src/docs/HOW_IT_WORKS.md). diff --git a/src/cpp/include/openvino/genai/llm_pipeline.hpp b/src/cpp/include/openvino/genai/llm_pipeline.hpp index abd4ee5a44..e79a6e65f0 100644 --- a/src/cpp/include/openvino/genai/llm_pipeline.hpp +++ b/src/cpp/include/openvino/genai/llm_pipeline.hpp @@ -5,11 +5,13 @@ #include #include +#include #include "openvino/core/any.hpp" #include "openvino/genai/generation_config.hpp" #include "openvino/genai/tokenizer.hpp" #include "openvino/genai/streamer_base.hpp" +#include "openvino/genai/perf_metrics.hpp" namespace ov { namespace genai { @@ -29,11 +31,13 @@ using StringInputs = std::variant>; * * @param tokens sequence of resulting tokens * @param scores sum of logarithmic probabilities of all tokens in the sequence +* @param metrics performance metrics with tpot, ttft, etc. of type ov::genai::PerfMetrics */ class EncodedResults { public: std::vector> tokens; std::vector scores; + PerfMetrics perf_metrics; }; /** @@ -42,11 +46,13 @@ class EncodedResults { * * @param texts vector of resulting sequences * @param scores scores for each sequence +* @param metrics performance metrics with tpot, ttft, etc. of type ov::genai::PerfMetrics */ class DecodedResults { public: std::vector texts; std::vector scores; + PerfMetrics perf_metrics; // @brief Convert DecodedResults to a string. operator std::string() const { diff --git a/src/cpp/include/openvino/genai/perf_metrics.hpp b/src/cpp/include/openvino/genai/perf_metrics.hpp new file mode 100644 index 0000000000..ddb9ff581f --- /dev/null +++ b/src/cpp/include/openvino/genai/perf_metrics.hpp @@ -0,0 +1,97 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#pragma once + +#include +#include "openvino/genai/visibility.hpp" +#include +#include +#include + +namespace ov { +namespace genai { + +using TimePoint = std::chrono::steady_clock::time_point; +using MicroSeconds = std::chrono::duration>; + +/** +* @brief Structure with raw performance metrics for each generation before any statistics calculated. +*/ +struct OPENVINO_GENAI_EXPORTS RawPerfMetrics { + std::vector generate_durations; + std::vector tokenization_durations; + std::vector detokenization_durations; + + std::vector m_times_to_first_token; + std::vector m_new_token_times; + std::vector m_batch_sizes; + std::vector m_durations; + + size_t num_generated_tokens; + size_t num_input_tokens; +}; + +/** +* @brief Structure to store mean and standart deviation values. +*/ +struct OPENVINO_GENAI_EXPORTS MeanStdPair { + float mean; + float std; +}; + +/** +* @brief Structure to store performance metric for each generation. +* +* @param +*/ +struct OPENVINO_GENAI_EXPORTS PerfMetrics { + float load_time; // Load time in ms. + MeanStdPair ttft; // Time to the first token (in ms) (TTTFT). + MeanStdPair tpot; // Time (in ms) per output token (TPOT). + MeanStdPair throughput; // Tokens per second. + + MeanStdPair generate_duration; + MeanStdPair tokenization_duration = {-1, -1}; + MeanStdPair detokenization_duration = {-1. -1}; + + size_t num_generated_tokens; + size_t num_input_tokens; + + float get_load_time(); // Load time in ms. + float get_num_generated_tokens(); + float get_num_input_tokens(); + MeanStdPair get_ttft(); // Time to the first token (in ms) (TTTFT). + MeanStdPair get_tpot(); // Time (in ms) per output token (TPOT). + MeanStdPair get_throughput(); // Tokens per second. + + MeanStdPair get_generate_duration(); + MeanStdPair get_tokenization_duration(); + MeanStdPair get_detokenization_duration(); + + // Flag indicating if raw metrics were evaluated. + // If false means current mean/std ttft, tpot, etc. are not actual + // and evaluate_statistics() should recalculate them. + bool m_evaluated = false; + + /** + * @brief calculates mean/std values from raw_metrics. + * + * @param start_time optional start_time in case if duration needs to be updated. + */ + void evaluate_statistics(std::optional start_time = std::nullopt); + + /** + * @brief convert duration to microseconds + * + * @param duration duration in + */ + static float get_microsec(std::chrono::steady_clock::duration duration); + PerfMetrics operator+(const PerfMetrics& metrics) const; + PerfMetrics& operator+=(const PerfMetrics& right); + + RawPerfMetrics raw_metrics; +}; + +} // namespace genai +} // namespace ov diff --git a/src/cpp/include/openvino/genai/scheduler_config.hpp b/src/cpp/include/openvino/genai/scheduler_config.hpp index 9d808fd424..aca823fa63 100644 --- a/src/cpp/include/openvino/genai/scheduler_config.hpp +++ b/src/cpp/include/openvino/genai/scheduler_config.hpp @@ -30,5 +30,13 @@ struct SchedulerConfig { // max number of scheduled sequences (you can think of it as "max batch size") std::size_t max_num_seqs = 256; + + // Enable caching of KV-blocks. + // When turned on all previously calculated KV-caches are kept in memory for future usages. + // KV-caches can be rewritten if KV-cache limit is reached, but blocks are not released. + // This results in more RAM usage, maximum RAM usage is determined by cache_size or num_kv_blocks parameters. + // When turend off only KV-cache required for batch calculation is kept in memory and + // when a sequence has finished genegartion its cache is released. + bool enable_prefix_caching = false; }; } diff --git a/src/cpp/src/block_manager.hpp b/src/cpp/src/block_manager.hpp index ab60b7f5ff..8c9c3ed512 100644 --- a/src/cpp/src/block_manager.hpp +++ b/src/cpp/src/block_manager.hpp @@ -6,6 +6,7 @@ #include #include #include +#include #include "sequence_group.hpp" @@ -13,13 +14,17 @@ namespace ov::genai { class KVCacheBlock { int m_ref_count; int m_index; + size_t m_hash; + size_t m_num_hashed_tokens; + std::chrono::time_point m_timestamp; public: using Ptr = std::shared_ptr; using CPtr = std::shared_ptr; explicit KVCacheBlock(int index) : m_ref_count(0), - m_index(index) { } + m_index(index), + m_timestamp(std::chrono::system_clock::now()) { } int get_index() const { return m_index; @@ -34,6 +39,7 @@ class KVCacheBlock { } void release() { + OPENVINO_ASSERT(m_ref_count > 0); --m_ref_count; } @@ -44,15 +50,79 @@ class KVCacheBlock { int get_references_count() const { return m_ref_count; } + + size_t get_hash() const { + return m_hash; + } + + size_t get_num_hashed_tokens() const { + return m_num_hashed_tokens; + } + + void set_hash(size_t hash, size_t num_hashed_tokens) { + m_hash = hash; + m_num_hashed_tokens = num_hashed_tokens; + } + + void set_timestamp(const std::chrono::time_point& timestamp) { + m_timestamp = timestamp; + } + + std::chrono::time_point get_timestamp() { + return m_timestamp; + } +}; + + +class Evictor { + std::map blocks; +public: + void add(size_t hash, KVCacheBlock::Ptr block) { + blocks[hash] = block; + } + + static bool block_is_less(const std::pair& lhs, const std::pair& rhs) { + return lhs.second->get_timestamp() < rhs.second->get_timestamp(); + } + + KVCacheBlock::Ptr get_block(size_t hash) { + if (blocks.find(hash)== blocks.end()) + { + return nullptr; + } + KVCacheBlock::Ptr block = blocks[hash]; + block->set_timestamp(std::chrono::system_clock::now()); + block->increment(); + blocks.erase(hash); + return block; + } + + KVCacheBlock::Ptr get_lru_block() { + if (!blocks.size()) { + return nullptr; + } + auto hash_block = std::min_element(std::begin(blocks), std::end(blocks), block_is_less); + auto block = hash_block->second; + block->set_timestamp(std::chrono::system_clock::now()); + block->increment(); + blocks.erase(hash_block->first); + return block; + } + + size_t num_blocks() const { + return blocks.size(); + } }; class BlockAllocator { std::list m_free_blocks; + ov::genai::Evictor m_evictor; int m_total_num_blocks; + bool m_enable_prefix_caching; public: - BlockAllocator(int num_blocks) : - m_total_num_blocks(num_blocks) { + BlockAllocator(int num_blocks, bool enable_prefix_caching) : + m_total_num_blocks(num_blocks), m_enable_prefix_caching(enable_prefix_caching) { for (int block_id = 0; block_id < m_total_num_blocks; ++block_id) { m_free_blocks.push_back(std::make_shared(block_id)); } @@ -64,21 +134,28 @@ class BlockAllocator { } size_t num_free_blocks() const { - return m_free_blocks.size(); + return m_free_blocks.size() + m_evictor.num_blocks(); } bool can_allocate_blocks(size_t num_blocks) const { - return num_blocks <= m_free_blocks.size(); + return num_blocks <= num_free_blocks(); } void free(KVCacheBlock::Ptr block) { block->release(); if (block->is_free()) { - m_free_blocks.push_back(block); + if (m_enable_prefix_caching) + { + m_evictor.add(block->get_hash(), block); + } + else { + m_free_blocks.push_back(block); + } } } KVCacheBlock::Ptr allocate_block() { + OPENVINO_ASSERT(!m_enable_prefix_caching); OPENVINO_ASSERT(can_allocate_blocks(1)); KVCacheBlock::Ptr allocated_block = m_free_blocks.front(); allocated_block->increment(); @@ -86,20 +163,84 @@ class BlockAllocator { return allocated_block; } + KVCacheBlock::Ptr allocate_block(size_t hash, size_t num_hashed_tokens, std::map& cached_blocks) { + OPENVINO_ASSERT(m_enable_prefix_caching); + OPENVINO_ASSERT(can_allocate_blocks(1)); + auto block = m_evictor.get_block(hash); + if (block != nullptr) { + // use cached block from evictor + cached_blocks[hash] = block; + return block; + } + // TODO: Currently we cache all allocated blocks which might be redundant for beam search, + // where blocks of non-used candidates are not needed in cache. + // This part can be improved if we cache only blocks for prompt. + if (cached_blocks.find(hash) != cached_blocks.end()) { + // use cashed block from cached_blocks + block = cached_blocks[hash]; + cached_blocks[hash]->increment(); + return block; + } + if (m_free_blocks.size() > 0) { + // allocate new empty block + KVCacheBlock::Ptr allocated_block = m_free_blocks.front(); + allocated_block->increment(); + allocated_block->set_hash(hash, num_hashed_tokens); + cached_blocks[hash] = allocated_block; + + m_free_blocks.pop_front(); + return allocated_block; + } + if (m_evictor.num_blocks() > 0) { + // get least resently used block from evictor and reuse it + KVCacheBlock::Ptr block = m_evictor.get_lru_block(); + cached_blocks.erase(block->get_hash()); + + // update block with new hash + block->set_hash(hash, num_hashed_tokens); + cached_blocks[hash] = block; + return block; + } + // out of memory + return nullptr; + } + + KVCacheBlock::Ptr get_cached_block(size_t hash, std::map& cached_blocks) { + auto block = m_evictor.get_block(hash); + if (block != nullptr) { + // use cashed block from evictor + cached_blocks[hash] = block; + return block; + } + if (cached_blocks.find(hash) != cached_blocks.end()) { + // use cashed block from cached_blocks + // TODO: add tokens validation in case of hash collision + block = cached_blocks[hash]; + cached_blocks[hash]->increment(); + return block; + } + return nullptr; + } + + float get_used_percentage() const { - return static_cast(m_total_num_blocks - m_free_blocks.size()) / m_total_num_blocks; + return static_cast(m_total_num_blocks - num_free_blocks()) / m_total_num_blocks; } }; class BlockManager { BlockAllocator m_allocator; + bool m_enable_prefix_caching; + size_t m_block_size; + // TODO: caching time can probably be improved if we use the prefix tree + std::map cached_blocks; // stores blocks for each sequence (not sequence group) // the same block can be seen in multiple block_tables for different sequences std::map> m_block_table; public: - BlockManager(int num_blocks) - : m_allocator(num_blocks) { } + BlockManager(int num_blocks, bool enable_prefix_caching, size_t block_size) + : m_allocator(num_blocks, enable_prefix_caching), m_enable_prefix_caching(enable_prefix_caching), m_block_size(block_size) { } ~BlockManager() { // sanity check that all sequences are freed @@ -195,11 +336,32 @@ class BlockManager { return m_allocator.can_allocate_blocks(num_blocks); } - void allocate(uint64_t sequence_id, size_t num_blocks) { + void allocate(ov::genai::Sequence::CPtr sequence, size_t num_blocks, const ov::genai::TokenIds& prompt_ids = {}) { OPENVINO_ASSERT(num_blocks > 0 && can_allocate_blocks(num_blocks)); + if (m_enable_prefix_caching) { + OPENVINO_ASSERT(prompt_ids.size() > 0, "prompt_ids should be set for hash calculation."); + } + auto sequence_id = sequence->get_id(); + auto block_table = m_block_table[sequence_id]; + auto content_length = sequence->get_generated_len() + prompt_ids.size(); + size_t num_hashed_tokens = block_table.size() * m_block_size; for (size_t i = 0; i < num_blocks; ++i) { - m_block_table[sequence_id].push_back(m_allocator.allocate_block()); + + ov::genai::KVCacheBlock::Ptr block = nullptr; + if (m_enable_prefix_caching) { + num_hashed_tokens += m_block_size; + if (num_hashed_tokens > content_length) { + num_hashed_tokens = content_length; + } + auto hash = sequence->get_hash(num_hashed_tokens, prompt_ids); + block = m_allocator.allocate_block(hash, num_hashed_tokens, cached_blocks); + } + else { + block = m_allocator.allocate_block(); + } + OPENVINO_ASSERT(block != nullptr); + m_block_table[sequence_id].push_back(block); } } @@ -324,21 +486,36 @@ class BlockManager { if (num_logical_blocks > num_physical_blocks) { OPENVINO_ASSERT(can_allocate_blocks(num_logical_blocks - num_physical_blocks)); - allocate(seq_id, num_logical_blocks - num_physical_blocks); + allocate(sequence, num_logical_blocks - num_physical_blocks, seq_group->get_prompt_ids()); } else { OPENVINO_ASSERT(num_logical_blocks == num_physical_blocks, "A number of physical and logic blocks must be the same in this code path"); KVCacheBlock::Ptr last_block = block_table.back(); - if (last_block->copy_on_write()) { // we need to fork current block, because reference counter is more than 1 - KVCacheBlock::Ptr new_block = m_allocator.allocate_block(); + KVCacheBlock::Ptr new_block = nullptr; + if (m_enable_prefix_caching) { + auto hash = sequence->get_hash(seq_group->get_context_len(), seq_group->get_prompt_ids()); + new_block = m_allocator.allocate_block(hash, seq_group->get_context_len(), cached_blocks); + cached_blocks[hash] = new_block; + } + else { + new_block = m_allocator.allocate_block(); + } block_table[num_physical_blocks - 1] = new_block; // write information about block forking for later usage in CacheManager copy_blocks_map[last_block->get_index()].push_back(new_block->get_index()); // release `last_block` usage m_allocator.free(last_block); } else { - // nothing to do, because we are the only users of this block + // we are the only users of this block + if (m_enable_prefix_caching) { + // update hash of block + auto prev_hash = last_block->get_hash(); + auto hash = sequence->get_hash(seq_group->get_context_len(), seq_group->get_prompt_ids()); + last_block->set_hash(hash, seq_group->get_context_len()); + cached_blocks.erase(prev_hash); + cached_blocks[hash] = last_block; + } } } } @@ -346,5 +523,57 @@ class BlockManager { // it returns information which blocks should be forked by CacheManager return copy_blocks_map; } + + + void _restore_cached_blocks(SequenceGroup::Ptr group, size_t block_size) { + auto prompt_ids = group->get_prompt_ids(); + auto sequences = group->get_not_finished_sequences(); + OPENVINO_ASSERT(sequences.size() == 1); + auto sequence = sequences[0]; + auto seq_id = sequence->get_id(); + auto& block_table = m_block_table[seq_id]; + + size_t content_len = 0; + while (content_len < prompt_ids.size()) { + size_t prev_iteration_content_len = content_len; + content_len += block_size; + if (content_len > prompt_ids.size()) { + content_len = prompt_ids.size(); + } + // restore fully filled blocks + auto hash = sequence->get_hash(content_len, prompt_ids); + auto block = m_allocator.get_cached_block(hash, cached_blocks); + if (block != nullptr) { + block->set_timestamp(std::chrono::system_clock::now()); + m_block_table[seq_id].push_back(block); + group->update_processed_tokens_num(content_len); + } + else { + // restore partially filled block + for (size_t i = 1; i < block_size; i++) { + if (prev_iteration_content_len + i > prompt_ids.size()) { + break; + } + auto hash = sequence->get_hash(prev_iteration_content_len + i, prompt_ids); + auto block = m_allocator.get_cached_block(hash, cached_blocks); + if (block != nullptr) { + block->set_timestamp(std::chrono::system_clock::now()); + m_block_table[seq_id].push_back(block); + group->update_processed_tokens_num(prev_iteration_content_len + i); + + size_t new_tokens_count_in_block = std::min(content_len, prev_iteration_content_len + block_size); + if (new_tokens_count_in_block > prev_iteration_content_len + i) { + cached_blocks.erase(hash); + auto new_hash = sequence->get_hash(new_tokens_count_in_block, prompt_ids); + cached_blocks[new_hash] = block; + } + + break; + } + } + break; + } + } + } }; } diff --git a/src/cpp/src/greedy_decoding.cpp b/src/cpp/src/greedy_decoding.cpp index 9170c7d2f9..8dc56b4ba8 100644 --- a/src/cpp/src/greedy_decoding.cpp +++ b/src/cpp/src/greedy_decoding.cpp @@ -1,7 +1,7 @@ // Copyright (C) 2023-2024 Intel Corporation // SPDX-License-Identifier: Apache-2.0 -#include "openvino/genai/llm_pipeline.hpp" +#include "openvino/genai/perf_metrics.hpp" #include "utils.hpp" namespace ov { @@ -19,12 +19,16 @@ EncodedResults greedy_decoding( const size_t batch_size = prompts_shape[0]; size_t running_batch_size = batch_size; size_t prompt_len = prompts_shape[1]; + size_t max_new_tokens = generation_config.get_max_new_tokens(prompt_len); + // Initialize results and performance metrics. EncodedResults results; + auto& raw_perf_counters = results.perf_metrics.raw_metrics; + results.scores.resize(running_batch_size); results.tokens.resize(running_batch_size); std::fill(results.scores.begin(), results.scores.end(), 0); - + m_model_runner.set_tensor("input_ids", input_ids); m_model_runner.set_tensor("attention_mask", attention_mask); if (position_ids.has_value()) @@ -50,6 +54,9 @@ EncodedResults greedy_decoding( eos_met[batch] = (out_token == generation_config.eos_token_id); m_model_runner.get_tensor("input_ids").data()[batch] = out_token; } + raw_perf_counters.m_new_token_times.emplace_back(std::chrono::steady_clock::now()); + raw_perf_counters.m_batch_sizes.emplace_back(batch_size); + if (streamer && streamer->put(token_iter_results[0])) { return results; } @@ -58,8 +65,8 @@ EncodedResults greedy_decoding( if (!generation_config.ignore_eos && all_are_eos) return results; - size_t max_tokens = generation_config.get_max_new_tokens(prompt_len); - for (size_t i = 0; i < max_tokens - 1; ++i) { + + for (size_t i = 0; i < max_new_tokens - 1; ++i) { if (position_ids.has_value()) utils::update_position_ids(m_model_runner.get_tensor("position_ids"), m_model_runner.get_tensor("attention_mask")); m_model_runner.set_tensor("attention_mask", utils::extend_attention(m_model_runner.get_tensor("attention_mask"))); @@ -80,6 +87,8 @@ EncodedResults greedy_decoding( m_model_runner.get_tensor("input_ids").data()[batch] = out_token; } + raw_perf_counters.m_new_token_times.emplace_back(std::chrono::steady_clock::now()); + raw_perf_counters.m_batch_sizes.emplace_back(batch_size); if (streamer && streamer->put(token_iter_results[0])) return results; @@ -106,8 +115,9 @@ EncodedResults greedy_decoding( if (streamer) { streamer->end(); } + return results; } } //namespace genai -} //namespace ov \ No newline at end of file +} //namespace ov diff --git a/src/cpp/src/group_beam_searcher.cpp b/src/cpp/src/group_beam_searcher.cpp index 8695aeac02..1b9729b2f6 100644 --- a/src/cpp/src/group_beam_searcher.cpp +++ b/src/cpp/src/group_beam_searcher.cpp @@ -362,14 +362,15 @@ std::pair beam_search(ov::InferRequest& lm, std::optional selected_beam_idx) { OPENVINO_ASSERT(config.num_beams % config.num_beam_groups == 0, "number of beams should be divisible by number of groups"); - - // Initialize beam search + auto batch_size = input_ids.get_shape().at(0); + auto sequence_length = input_ids.get_shape().at(1); + + // Initialize beam search. const int64_t* prompt_data = input_ids.data(); std::vector> prompts; prompts.reserve(batch_size); for (size_t batch = 0; batch < batch_size; batch++) { - size_t sequence_length = input_ids.get_shape().at(1); size_t batch_offset = batch * sequence_length; const int64_t* prompt_start = prompt_data + batch_offset; prompts.push_back(std::vector{prompt_start, prompt_start + sequence_length}); @@ -389,7 +390,7 @@ std::pair beam_search(ov::InferRequest& lm, lm.set_tensor("beam_idx", beam_idx); Parameters parameters{std::move(prompts)}; - parameters.max_new_tokens = config.max_new_tokens; + parameters.max_new_tokens = config.get_max_new_tokens(sequence_length); parameters.eos_token_id = config.eos_token_id; parameters.n_groups = config.num_beam_groups; parameters.group_size = config.num_beams / config.num_beam_groups; @@ -401,11 +402,20 @@ std::pair beam_search(ov::InferRequest& lm, std::vector next_tokens; std::vector next_beams; - + + // Reserve for performance counters. + std::vector new_token_times; + std::vector batch_sizes; + new_token_times.reserve(parameters.max_new_tokens); + batch_sizes.reserve(parameters.max_new_tokens); + for (size_t length_count = 0; ; ++length_count) { lm.infer(); std::tie(next_tokens, next_beams) = group_beam_searcher.select_next_tokens(lm.get_tensor("logits")); + new_token_times.emplace_back(std::chrono::steady_clock::now()); + batch_sizes.emplace_back(batch_size); + if (next_tokens.empty() || length_count == parameters.max_new_tokens - 1) { // Break the cycle before masks are extended in update_attention_mask_with_beams. // If generation is continued, attention_mask length should be equal to KV cache size. @@ -434,6 +444,9 @@ std::pair beam_search(ov::InferRequest& lm, int32_t res_selected_beam_idx = 0; results.scores.reserve(config.num_return_sequences * result.size()); results.tokens.reserve(config.num_return_sequences * result.size()); + auto& raw_perf_counters = results.perf_metrics.raw_metrics; + raw_perf_counters.m_new_token_times = new_token_times; + raw_perf_counters.m_batch_sizes = batch_sizes; // align output with HF for (size_t prompt_id = 0; prompt_id < result.size(); prompt_id++) { @@ -462,7 +475,7 @@ std::pair beam_search(ov::InferRequest& lm, results.tokens.push_back(std::move(beam->get().tokens)); } } - + return {results, res_selected_beam_idx}; } diff --git a/src/cpp/src/llm_pipeline.cpp b/src/cpp/src/llm_pipeline.cpp index 1d68d4c746..8505daf3b2 100644 --- a/src/cpp/src/llm_pipeline.cpp +++ b/src/cpp/src/llm_pipeline.cpp @@ -10,6 +10,7 @@ #include "openvino/genai/continuous_batching_pipeline.hpp" #include "openvino/genai/generation_config.hpp" #include "openvino/genai/llm_pipeline.hpp" +#include "openvino/genai/perf_metrics.hpp" #include "llm_pipeline_base.hpp" #include "llm_pipeline_static.hpp" #include "utils.hpp" @@ -111,8 +112,9 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { OptionalGenerationConfig generation_config, StreamerVariant streamer ) override { + auto start_time = std::chrono::steady_clock::now(); GenerationConfig config = (generation_config.has_value()) ? *generation_config : m_generation_config; - EncodedInputs encoded_input; + TokenizedInputs encoded_input; if (auto input_vector = std::get_if>(&inputs)) { OPENVINO_ASSERT(!is_chat_conversation, "Can't chat with multiple prompts"); @@ -145,9 +147,12 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { encoded_input = m_tokenizer.encode(prompt); } } + auto encode_stop_time = std::chrono::steady_clock::now(); + auto encoded_results = generate(encoded_input, config, streamer); - auto encoded_results = generate(encoded_input, config, streamer); + auto decode_start_time = std::chrono::steady_clock::now(); DecodedResults decoded_results = {m_tokenizer.decode(encoded_results.tokens), encoded_results.scores}; + auto decode_stop_time = std::chrono::steady_clock::now(); if (is_chat_conversation) { // Tail of chat template is missing in KV cache. @@ -157,6 +162,17 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { m_history.push_back({{"role", "assistant"}, {"content", answer}}); } + // generate_durations + decoded_results.perf_metrics = encoded_results.perf_metrics; + + auto& raw_counters = decoded_results.perf_metrics.raw_metrics; + auto stop_time = std::chrono::steady_clock::now(); + raw_counters.generate_durations = std::vector(); + raw_counters.generate_durations.emplace_back(PerfMetrics::get_microsec(stop_time - start_time)); + raw_counters.tokenization_durations.emplace_back(PerfMetrics::get_microsec(encode_stop_time - start_time)); + raw_counters.detokenization_durations.emplace_back(PerfMetrics::get_microsec(decode_stop_time - decode_start_time)); + + decoded_results.perf_metrics.evaluate_statistics(start_time); return decoded_results; } @@ -165,9 +181,9 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { OptionalGenerationConfig generation_config, StreamerVariant streamer ) override { + auto start_time = std::chrono::steady_clock::now(); ov::Tensor input_ids; ov::Tensor attention_mask; - if (auto data = std::get_if(&inputs)) { input_ids = *data; attention_mask = ov::genai::utils::init_attention_mask(input_ids); @@ -255,7 +271,14 @@ class StatefulLLMPipeline final : public LLMPipelineImplBase { } else { m_is_cache_empty = false; } - + auto stop_time = std::chrono::steady_clock::now(); + + // If is called without tokenization then that stat will not be reported. + auto& metrics = result.perf_metrics; + metrics.num_input_tokens = batch_size * input_ids.get_shape().at(1); + metrics.load_time = this->m_load_time_ms; + metrics.raw_metrics.generate_durations.emplace_back(PerfMetrics::get_microsec(stop_time - start_time)); + metrics.evaluate_statistics(start_time); return result; } @@ -487,7 +510,10 @@ ov::genai::LLMPipeline::LLMPipeline( const ov::genai::Tokenizer& tokenizer, OptionalGenerationConfig generation_config ) { + auto start_time = std::chrono::steady_clock::now(); m_pimpl = std::make_unique(request, tokenizer, generation_config); + auto stop_time = std::chrono::steady_clock::now(); + m_pimpl->m_load_time_ms = std::chrono::duration_cast(stop_time - start_time).count(); } ov::genai::LLMPipeline::LLMPipeline( @@ -495,27 +521,35 @@ ov::genai::LLMPipeline::LLMPipeline( const ov::genai::Tokenizer& tokenizer, const std::string& device, const ov::AnyMap& plugin_config -): m_pimpl{[&]() -> std::unique_ptr { +){ + auto start_time = std::chrono::steady_clock::now(); if ("CB" == device) { - return std::make_unique(model_path, tokenizer, "CPU", plugin_config); - } if ("NPU" == device) { - return std::make_unique(model_path, tokenizer, device, plugin_config); + m_pimpl = std::make_unique(model_path, tokenizer, "CPU", plugin_config); + } else if ("NPU" == device) { + m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); + } else { + m_pimpl = std::make_unique(model_path, tokenizer, device, plugin_config); } - return std::make_unique(model_path, tokenizer, device, plugin_config); -}()} {} + auto stop_time = std::chrono::steady_clock::now(); + m_pimpl->m_load_time_ms = std::chrono::duration_cast(stop_time - start_time).count(); +} ov::genai::LLMPipeline::LLMPipeline( const std::string& path, const std::string& device, const ov::AnyMap& config -): m_pimpl{[&]() -> std::unique_ptr { +){ + auto start_time = std::chrono::steady_clock::now(); if ("CB" == device) { - return std::make_unique(path, "CPU", config); - } if ("NPU" == device) { - return std::make_unique(path, device, config); + m_pimpl = std::make_unique(path, "CPU", config); + } else if ("NPU" == device) { + m_pimpl = std::make_unique(path, device, config); + } else { + m_pimpl = std::make_unique(path, device, config); } - return std::make_unique(path, device, config); -}()} {} + auto stop_time = std::chrono::steady_clock::now(); + m_pimpl->m_load_time_ms = std::chrono::duration_cast(stop_time - start_time).count(); +} ov::genai::GenerationConfig ov::genai::LLMPipeline::get_generation_config() const { return m_pimpl->m_generation_config; diff --git a/src/cpp/src/llm_pipeline_base.hpp b/src/cpp/src/llm_pipeline_base.hpp index 9df6442b35..7e58cd3b37 100644 --- a/src/cpp/src/llm_pipeline_base.hpp +++ b/src/cpp/src/llm_pipeline_base.hpp @@ -36,6 +36,8 @@ class LLMPipelineImplBase { Tokenizer m_tokenizer; GenerationConfig m_generation_config; + + float m_load_time_ms = 0; }; } // namespace genai diff --git a/src/cpp/src/llm_pipeline_static.cpp b/src/cpp/src/llm_pipeline_static.cpp index 3f50d30ec9..c4ff0a90ab 100644 --- a/src/cpp/src/llm_pipeline_static.cpp +++ b/src/cpp/src/llm_pipeline_static.cpp @@ -12,6 +12,23 @@ namespace { +void align_u4_zp_constants(const std::shared_ptr& model) { + for (auto op : model->get_ops()) { + if (ov::op::util::is_constant(op)) { + auto cst_op = std::dynamic_pointer_cast(op); + const auto cst_op_out = cst_op->output(0); + if (cst_op_out.get_element_type() == ov::element::u4 && ov::shape_size(cst_op_out.get_shape()) == 1u) { + ov::Tensor cst_tensor(ov::element::u4, cst_op_out.get_shape()); + *static_cast(cst_tensor.data()) = cst_op->get_vector()[0] & 0x0f; + auto new_cst_op = std::make_shared(cst_tensor); + for (auto target_input : cst_op_out.get_target_inputs()) { + target_input.replace_source_output(new_cst_op); + } + } + } + } +} + std::shared_ptr add_slices_to_kvcache_inputs(const std::shared_ptr& model) { const auto kvcache_name_pattern = "past_key_values"; std::vector> new_params; @@ -144,26 +161,27 @@ StaticLLMPipeline::StaticLLMPipeline( */ ov::Core core; // (1) Read the template model - this will be kvcache model - auto kvcache_model = core.read_model(path / "openvino_model.xml"); + m_kvcache_model = core.read_model(path / "openvino_model.xml"); // (2) Expose KV-cache input and output layers from kvcache model - ov::pass::StatefulToStateless().run_on_model(kvcache_model); + ov::pass::StatefulToStateless().run_on_model(m_kvcache_model); + align_u4_zp_constants(m_kvcache_model); // (3) Clone the model - this will be prefill - auto prefill_model = kvcache_model->clone(); - prefill_model->set_friendly_name(kvcache_model->get_friendly_name() + "_prefill"); + m_prefill_model = m_kvcache_model->clone(); + m_prefill_model->set_friendly_name(m_kvcache_model->get_friendly_name() + "_prefill"); // (4) Reshape both models to static shape m_kvcache_desc = KVCacheDesc { 1024u, 0u }; const uint32_t max_prompt_size = m_kvcache_desc.total_size; const uint32_t max_kvcache_size = m_kvcache_desc.total_size; - reshape_to_static(prefill_model, max_prompt_size, max_kvcache_size); - reshape_to_static(kvcache_model, 1u, max_kvcache_size); + reshape_to_static(m_prefill_model, max_prompt_size, max_kvcache_size); + reshape_to_static(m_kvcache_model, 1u, max_kvcache_size); // (5) Add slices to kvcache model - kvcache_model = add_slices_to_kvcache_inputs(kvcache_model); + m_kvcache_model = add_slices_to_kvcache_inputs(m_kvcache_model); // (6) Compile both model m_prefill_request = core.compile_model( - prefill_model, device, extract_config_or_default(config, "PREFILL_CONFIG") + m_prefill_model, device, extract_config_or_default(config, "PREFILL_CONFIG") ).create_infer_request(); m_kvcache_request = core.compile_model( - kvcache_model, device, extract_config_or_default(config, "GENERATE_CONFIG") + m_kvcache_model, device, extract_config_or_default(config, "GENERATE_CONFIG") ).create_infer_request(); // (7) Initialize tensors prepare_for_new_conversation(); diff --git a/src/cpp/src/llm_pipeline_static.hpp b/src/cpp/src/llm_pipeline_static.hpp index 85488e1880..7560b7e336 100644 --- a/src/cpp/src/llm_pipeline_static.hpp +++ b/src/cpp/src/llm_pipeline_static.hpp @@ -46,6 +46,10 @@ class StaticLLMPipeline final : public LLMPipelineImplBase { uint32_t num_stored_tokens; }; + // FIXME: Ideally, we don't need to keep those + std::shared_ptr m_kvcache_model; + std::shared_ptr m_prefill_model; + KVCacheDesc m_kvcache_desc; ov::InferRequest m_kvcache_request; ov::InferRequest m_prefill_request; diff --git a/src/cpp/src/multinomial_decoding.cpp b/src/cpp/src/multinomial_decoding.cpp index fd16e948c1..b00c62aed7 100644 --- a/src/cpp/src/multinomial_decoding.cpp +++ b/src/cpp/src/multinomial_decoding.cpp @@ -162,7 +162,9 @@ ov::genai::EncodedResults multinominal_decoding(ov::InferRequest& m_model_runner size_t prompt_len = prompts_shape[1]; - ov::genai::EncodedResults results; + // Initialize results and performance metrics. + EncodedResults results; + auto& raw_perf_counters = results.perf_metrics.raw_metrics; results.scores.resize(batch_size, 0); results.tokens.resize(batch_size); @@ -179,6 +181,8 @@ ov::genai::EncodedResults multinominal_decoding(ov::InferRequest& m_model_runner m_model_runner.get_tensor("beam_idx").data()[0] = 0; m_model_runner.infer(); + raw_perf_counters.m_new_token_times.emplace_back(std::chrono::steady_clock::now()); + raw_perf_counters.m_batch_sizes.emplace_back(batch_size); auto logits_tensor = m_model_runner.get_tensor("logits"); @@ -222,6 +226,8 @@ ov::genai::EncodedResults multinominal_decoding(ov::InferRequest& m_model_runner m_model_runner.get_tensor("input_ids").data()[0] = out_token.id; m_model_runner.infer(); + raw_perf_counters.m_new_token_times.emplace_back(std::chrono::steady_clock::now()); + raw_perf_counters.m_batch_sizes.emplace_back(batch_size); logits = m_model_runner.get_tensor("logits").data(); out_token = sampling.get_out_token(logits, vocab_size, tokens); diff --git a/src/cpp/src/perf_metrics.cpp b/src/cpp/src/perf_metrics.cpp new file mode 100644 index 0000000000..2f378ab302 --- /dev/null +++ b/src/cpp/src/perf_metrics.cpp @@ -0,0 +1,164 @@ +// Copyright (C) 2023-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 + +#include "openvino/genai/perf_metrics.hpp" +#include "openvino/openvino.hpp" +#include +#include +#include + +namespace { + +ov::genai::MeanStdPair calc_mean_and_std(const std::vector& durations) { + // Accepts time durations in microseconds and returns standard deviation and mean in milliseconds. + float mean = std::accumulate(durations.begin(), durations.end(), 0.0f, + [](const float& acc, const ov::genai::MicroSeconds& duration) -> float { + return acc + duration.count() / 1000.0f; + }); + mean /= durations.size(); + + float sum_square_durations = std::accumulate(durations.begin(), durations.end(), 0.0f, + [](const float& acc, const ov::genai::MicroSeconds& duration) -> float { + auto d = duration.count() / 1000.0f; + return acc + d * d; + }); + float std = std::sqrt(sum_square_durations / durations.size() - mean * mean); + return {mean, std}; +} + + +} // namespace + +namespace ov { +namespace genai { + +float PerfMetrics::get_load_time() { + return load_time; +} + +float PerfMetrics::get_num_generated_tokens() { + evaluate_statistics(); + return num_generated_tokens; +} + +float PerfMetrics::get_num_input_tokens() { + evaluate_statistics(); + return num_generated_tokens; +} + +MeanStdPair PerfMetrics::get_ttft() { + evaluate_statistics(); + return ttft; +} + +MeanStdPair PerfMetrics::get_tpot() { + evaluate_statistics(); + return tpot; +} + +MeanStdPair PerfMetrics::get_throughput() { + evaluate_statistics(); + return throughput; +} + +MeanStdPair PerfMetrics::get_generate_duration() { + evaluate_statistics(); + return generate_duration; +} + +MeanStdPair PerfMetrics::get_tokenization_duration() { + evaluate_statistics(); + return tokenization_duration; +} + +MeanStdPair PerfMetrics::get_detokenization_duration() { + evaluate_statistics(); + return detokenization_duration; +} + +float PerfMetrics::get_microsec(std::chrono::steady_clock::duration duration) { + return std::chrono::duration_cast(duration).count(); +} + +void PerfMetrics::evaluate_statistics(std::optional start_time) { + if (m_evaluated){ + return; + } + // If start_tiem is specified then recalcualte durations according to start times and calculate statistics only after that. + if (start_time.has_value()) { + auto start_time_val = *start_time; + auto& tok_times = raw_metrics.m_new_token_times; + auto& batch_sizes = raw_metrics.m_batch_sizes; + raw_metrics.m_durations = std::vector(tok_times.size()); + + auto ttft = tok_times[0] - start_time_val; + raw_metrics.m_times_to_first_token = std::vector(); + raw_metrics.m_times_to_first_token.emplace_back(ttft); + num_generated_tokens = 0; + for (size_t i = 0; i < tok_times.size(); ++i) { + raw_metrics.m_durations[i] = tok_times[i] - start_time_val; + + // If in 10 ms a batch of 5 new tokens is generated then TPOT is 10 / 5 = 2 tok/ms. + raw_metrics.m_durations[i] /= batch_sizes[i]; + num_generated_tokens += batch_sizes[i]; + start_time_val = tok_times[i]; + } + } + + // calc_mean_and_std will convert microsecond to milliseconds. + tpot = calc_mean_and_std(raw_metrics.m_durations); + ttft = calc_mean_and_std(raw_metrics.m_times_to_first_token); + + generate_duration = calc_mean_and_std(raw_metrics.generate_durations); + tokenization_duration = calc_mean_and_std(raw_metrics.tokenization_durations); + detokenization_duration = calc_mean_and_std(raw_metrics.detokenization_durations); + + // tokens per second + throughput = {1000.0f / tpot.mean, (tpot.std * 1000.0f) / (tpot.mean * tpot.mean)}; + m_evaluated = true; +} + +PerfMetrics PerfMetrics::operator+(const PerfMetrics& right) const { + OPENVINO_ASSERT(right.load_time == load_time, "generation metrics can be accumulated only for the same pipeline"); + + // Copy left value to res. + PerfMetrics res = *this; + + // Concatenate durations, batch_sizes first token times. + auto& new_durations = res.raw_metrics.m_durations; + auto& new_batch_sizes = res.raw_metrics.m_batch_sizes; + auto& new_times_to_first_token = res.raw_metrics.m_times_to_first_token; + auto& right_durations = right.raw_metrics.m_durations; + auto& right_batch_sizes = right.raw_metrics.m_batch_sizes; + auto& right_times_to_first_token = right.raw_metrics.m_times_to_first_token; + + new_durations.insert(new_durations.end(), right_durations.begin(), right_durations.end()); + new_times_to_first_token.insert(new_times_to_first_token.end(), right_times_to_first_token.begin(), right_times_to_first_token.end()); + new_batch_sizes.insert(new_batch_sizes.end(), right_batch_sizes.begin(), right_batch_sizes.end()); + + // Concatenate tokenization/detokenization and total generation times. + auto& new_tok_durations = res.raw_metrics.tokenization_durations; + auto& new_detok_durations = res.raw_metrics.detokenization_durations; + auto& new_gen_durations = res.raw_metrics.generate_durations; + auto& right_tok_durations = right.raw_metrics.tokenization_durations; + auto& right_detok_durations = right.raw_metrics.detokenization_durations; + auto& right_gen_durations = right.raw_metrics.generate_durations; + + new_tok_durations.insert(new_tok_durations.end(), right_tok_durations.begin(), right_tok_durations.end()); + new_detok_durations.insert(new_detok_durations.end(), right_detok_durations.begin(), right_detok_durations.end()); + new_gen_durations.insert(new_gen_durations.end(), right_gen_durations.begin(), right_gen_durations.end()); + + res.num_generated_tokens = num_generated_tokens + right.num_generated_tokens; + res.num_input_tokens = num_generated_tokens + right.num_input_tokens; + res.load_time = load_time; + res.m_evaluated = false; + return res; +} + +PerfMetrics& PerfMetrics::operator+=(const PerfMetrics& right) { + *this = *this + right; + return *this; +} + +} // namespace genai +} // namespace ov diff --git a/src/cpp/src/scheduler.hpp b/src/cpp/src/scheduler.hpp index ca749137db..cbd6668f90 100644 --- a/src/cpp/src/scheduler.hpp +++ b/src/cpp/src/scheduler.hpp @@ -10,7 +10,6 @@ #include "openvino/genai/scheduler_config.hpp" #include "block_manager.hpp" #include "sequence_group.hpp" -#include "block_manager.hpp" namespace ov::genai { class Scheduler { @@ -34,11 +33,14 @@ class Scheduler { }; explicit Scheduler(const SchedulerConfig & config = {}) : - m_config(config), m_block_manager(m_config.num_kv_blocks) { } + m_config(config), m_block_manager(m_config.num_kv_blocks, m_config.enable_prefix_caching, m_config.block_size) { } Output schedule(std::vector& sequence_groups) { Output scheduler_output; + if (m_config.enable_prefix_caching) + _restore_cached_blocks(sequence_groups); + if (m_config.dynamic_split_fuse) { // deepspeed-mii case // generation phase is always scheduled first @@ -167,6 +169,15 @@ class Scheduler { return std::numeric_limits::max(); } + void _restore_cached_blocks(const std::vector& sequence_groups) { + for (size_t sequence_group_id = 0; sequence_group_id < sequence_groups.size(); ++sequence_group_id) { + SequenceGroup::Ptr sequence_group = sequence_groups[sequence_group_id]; + if (sequence_group->can_generate_tokens() || sequence_group->num_running_seqs() != 1) + continue; + m_block_manager._restore_cached_blocks(sequence_group, m_config.block_size); + } + } + void _apply_preemption(size_t sequence_group_id, const std::vector& sequence_groups) { SequenceGroup::Ptr sequence_group = sequence_groups[sequence_group_id]; @@ -222,7 +233,7 @@ class Scheduler { if (num_scheduled_tokens > 0) { // allocate KV blocks if required if (num_scheduled_blocks > 0) - m_block_manager.allocate(seq_id, num_scheduled_blocks); + m_block_manager.allocate(sequence, num_scheduled_blocks, sequence_group->get_prompt_ids()); // and schedule tokens sequence_group->schedule_tokens(num_scheduled_tokens); @@ -326,7 +337,8 @@ class Scheduler { // prompt phases can have a single running sequence OPENVINO_ASSERT(num_running_seqs == 1); // here we also assume that sequence must be scheduler in a single shot and has no already generated context - OPENVINO_ASSERT(sequence_group->get_context_len() == 0); + if (!m_config.enable_prefix_caching) + OPENVINO_ASSERT(sequence_group->get_context_len() == 0); size_t num_available_tokens_in_megabatch = m_config.max_num_batched_tokens - scheduler_output.m_total_num_scheduled_tokens; size_t sequence_len = sequence_group->get_num_available_tokens_for_batching(); @@ -354,11 +366,15 @@ class Scheduler { Sequence::Ptr sequence = (*sequence_group)[0]; uint64_t seq_id = sequence->get_id(); - // allocate KV blocks - m_block_manager.allocate(seq_id, num_required_blocks); // and schedule tokens sequence_group->schedule_tokens(sequence_len); + // allocate KV blocks + if (sequence_group->get_num_processed_tokens() == 0) + m_block_manager.allocate(sequence, num_required_blocks, sequence_group->get_prompt_ids()); + else + m_block_manager.append_slots(sequence_group); + // add information to scheduler_output { scheduler_output.m_scheduled_sequence_groups_ids.push_back(sequence_group_id); diff --git a/src/cpp/src/sequence_group.hpp b/src/cpp/src/sequence_group.hpp index 3df1820cfb..008a36282e 100644 --- a/src/cpp/src/sequence_group.hpp +++ b/src/cpp/src/sequence_group.hpp @@ -6,6 +6,7 @@ #include #include #include +#include #include "openvino/genai/generation_handle.hpp" #include "openvino/genai/generation_config.hpp" @@ -121,6 +122,21 @@ class Sequence { float score = cumulative_log_prob / std::pow(current_length, sampling_params.length_penalty); return score; } + + // Each KV block can be uniquely identified by + // the tokens within the block and the tokens in the prefix before the block. + // hash(prefix tokens + block tokens) <--> KV Block + size_t get_hash(size_t content_length, const ov::genai::TokenIds& prompt_ids) const { + std::vector content; + OPENVINO_ASSERT(content_length <= prompt_ids.size() + m_generated_ids.size()); + content.insert( content.end(), prompt_ids.begin(), prompt_ids.begin() + std::min(prompt_ids.size(), content_length)); + if (content_length > prompt_ids.size()) { + content.insert(content.end(), m_generated_ids.begin(), m_generated_ids.begin() + content_length - prompt_ids.size()); + } + const char* data = reinterpret_cast(content.data()); + std::size_t size = content.size() * sizeof(content[0]); + return std::hash{}(std::string_view(data, size)); + } }; // contains a list of Sequences in generic case (beam search or parallel sampling) @@ -345,6 +361,11 @@ class SequenceGroup { clear_scheduled_tokens(); } + void update_processed_tokens_num(size_t processed_tokens) { + m_num_processed_tokens = processed_tokens; + m_max_content_len = processed_tokens; + } + void clear_waiting_sequences() { for (size_t seq_id = 0; seq_id < m_sequences.size(); ++seq_id) { if (m_sequences[seq_id]->is_waiting()) { diff --git a/src/python/py_generate_pipeline.cpp b/src/python/py_generate_pipeline.cpp index f8888ba258..031c8fb97b 100644 --- a/src/python/py_generate_pipeline.cpp +++ b/src/python/py_generate_pipeline.cpp @@ -20,7 +20,10 @@ using ov::genai::EncodedResults; using ov::genai::GenerationConfig; using ov::genai::GenerationResult; using ov::genai::LLMPipeline; +using ov::genai::MeanStdPair; using ov::genai::OptionalGenerationConfig; +using ov::genai::PerfMetrics; +using ov::genai::RawPerfMetrics; using ov::genai::SchedulerConfig; using ov::genai::StopCriteria; using ov::genai::StreamerBase; @@ -36,6 +39,17 @@ using PyBindStreamerVariant = std::variant, std::sh template struct overloaded : Ts... { using Ts::operator()...; }; template overloaded(Ts...) -> overloaded; +template +std::vector get_ms(const T& instance, U T::*member) { + // Converts c++ duration to float so that it can be used in Python. + std::vector res; + const auto& durations = instance.*member; + res.reserve(durations.size()); + std::transform(durations.begin(), durations.end(), std::back_inserter(res), + [](const auto& duration) { return duration.count(); }); + return res; +} + namespace { auto generate_docstring = R"( @@ -563,7 +577,45 @@ PYBIND11_MODULE(py_generate_pipeline, m) { .def(py::init<>()) .def_property_readonly("texts", [](const DecodedResults &dr) { return handle_utf8_results(dr); }) .def_readonly("scores", &DecodedResults::scores) - .def("__str__", &DecodedResults::operator std::string);; + .def_readonly("perf_metrics", &DecodedResults::perf_metrics) + .def("__str__", &DecodedResults::operator std::string); + + py::class_(m, "RawPerfMetrics") + .def(py::init<>()) + .def_readonly("generate_durations", &RawPerfMetrics::generate_durations) + .def_property_readonly("tokenization_durations", [](const RawPerfMetrics &rw) { + return get_ms(rw, &RawPerfMetrics::tokenization_durations); + }) + .def_property_readonly("detokenization_durations", [](const RawPerfMetrics &rw) { + return get_ms(rw, &RawPerfMetrics::detokenization_durations); + }) + .def_property_readonly("m_times_to_first_token", [](const RawPerfMetrics &rw) { + return get_ms(rw, &RawPerfMetrics::m_times_to_first_token); + }) + .def_property_readonly("m_durations", [](const RawPerfMetrics &rw) { + return get_ms(rw, &RawPerfMetrics::m_durations); + }) + .def_readonly("m_batch_sizes", &RawPerfMetrics::m_batch_sizes) + .def_readonly("num_generated_tokens", &RawPerfMetrics::num_generated_tokens) + .def_readonly("num_input_tokens", &RawPerfMetrics::num_input_tokens); + + py::class_(m, "MeanStdPair") + .def(py::init<>()) + .def_readonly("mean", &MeanStdPair::mean) + .def_readonly("std", &MeanStdPair::std); + + py::class_(m, "PerfMetrics") + .def(py::init<>()) + .def("get_generate_duration", &PerfMetrics::get_generate_duration) + .def("get_tokenization_duration", &PerfMetrics::get_tokenization_duration) + .def("get_detokenization_duration", &PerfMetrics::get_detokenization_duration) + .def("get_throughput", &PerfMetrics::get_throughput) + .def("get_tpot", &PerfMetrics::get_tpot) + .def("get_ttft", &PerfMetrics::get_ttft) + .def("get_load_time", &PerfMetrics::get_load_time) + .def("__add__", &PerfMetrics::operator+) + .def("__iadd__", &PerfMetrics::operator+=) + .def_readonly("raw_metrics", &PerfMetrics::raw_metrics); py::class_(m, "TokenizedInputs") .def(py::init()) @@ -572,7 +624,8 @@ PYBIND11_MODULE(py_generate_pipeline, m) { py::class_(m, "EncodedResults") .def_readonly("tokens", &EncodedResults::tokens) - .def_readonly("scores", &EncodedResults::scores); + .def_readonly("scores", &EncodedResults::scores) + .def_readonly("perf_metrics", &EncodedResults::perf_metrics); py::class_>(m, "StreamerBase") // Change the holder form unique_ptr to shared_ptr .def(py::init<>()) @@ -618,11 +671,11 @@ PYBIND11_MODULE(py_generate_pipeline, m) { .def(py::init<>()) .def_readwrite("max_num_batched_tokens", &SchedulerConfig::max_num_batched_tokens) .def_readwrite("num_kv_blocks", &SchedulerConfig::num_kv_blocks) - .def_readwrite("cache_size", &SchedulerConfig::cache_size) .def_readwrite("block_size", &SchedulerConfig::block_size) .def_readwrite("cache_size", &SchedulerConfig::cache_size) .def_readwrite("dynamic_split_fuse", &SchedulerConfig::dynamic_split_fuse) - .def_readwrite("max_num_seqs", &SchedulerConfig::max_num_seqs); + .def_readwrite("max_num_seqs", &SchedulerConfig::max_num_seqs) + .def_readwrite("enable_prefix_caching", &SchedulerConfig::enable_prefix_caching); py::class_(m, "ContinuousBatchingPipeline") .def(py::init([](const std::string& model_path, const SchedulerConfig& scheduler_config, const std::string& device, const std::map& llm_plugin_config, const std::map& tokenizer_plugin_config) { diff --git a/tests/cpp/CMakeLists.txt b/tests/cpp/CMakeLists.txt index 025a58a507..083b911416 100644 --- a/tests/cpp/CMakeLists.txt +++ b/tests/cpp/CMakeLists.txt @@ -4,6 +4,9 @@ FetchContent_Declare( ) FetchContent_MakeAvailable(googletest) set(TEST_TARGET_NAME "tests_continuous_batching") -add_executable(${TEST_TARGET_NAME} scheduler.cpp block_manager.cpp logit_filtering.cpp cache_manager.cpp generate_config.cpp) +file(GLOB tests_src + "*.cpp" +) +add_executable(${TEST_TARGET_NAME} ${tests_src}) target_link_libraries(${TEST_TARGET_NAME} PUBLIC openvino::genai gtest_main) target_include_directories(${TEST_TARGET_NAME} PRIVATE "${PROJECT_SOURCE_DIR}/src/cpp/src") diff --git a/tests/cpp/block_manager.cpp b/tests/cpp/block_manager.cpp index b3c89535a6..5a76a7a0ce 100644 --- a/tests/cpp/block_manager.cpp +++ b/tests/cpp/block_manager.cpp @@ -10,30 +10,40 @@ #include "scheduler.hpp" TEST(TestBlockManager, general_test) { - ov::genai::BlockManager bm = ov::genai::BlockManager(6); + ov::genai::BlockManager bm = ov::genai::BlockManager(6, false, 4); + ov::genai::TokenIds prompt_ids; + + ov::genai::SequenceGroup::Ptr sequence_group = std::make_shared( + 0, + ov::Tensor(ov::element::i64, { + prompt_ids.size()}, prompt_ids.data()), + ov::genai::beam_search(), + 4); + auto sequence = sequence_group->get_not_finished_sequences()[0]; + bm.allocate(sequence, 6); + auto seq_id = sequence->get_id(); + EXPECT_TRUE(bm.has_block_table(seq_id)); + EXPECT_EQ(bm.get_block_table(seq_id).size(), 6); - bm.allocate(0, 6); - EXPECT_TRUE(bm.has_block_table(0)); - EXPECT_EQ(bm.get_block_table(0).size(), 6); EXPECT_EQ(bm.num_free_blocks(), 0); - bm.free_sequence_partially_single_runnning_sequence(0, 4); - EXPECT_EQ(bm.get_block_table(0).size(), 2); + bm.free_sequence_partially_single_runnning_sequence(seq_id, 4); + EXPECT_EQ(bm.get_block_table(seq_id).size(), 2); EXPECT_EQ(bm.num_free_blocks(), 4); - bm.free_sequence(0); - EXPECT_FALSE(bm.has_block_table(0)); + bm.free_sequence(seq_id); + EXPECT_FALSE(bm.has_block_table(seq_id)); EXPECT_EQ(bm.num_free_blocks(), 6); - bm.allocate(0, 2); - bm.fork_sequence(0, 1); + bm.allocate(sequence, 2); + bm.fork_sequence(seq_id, 1); EXPECT_TRUE(bm.has_block_table(1)); EXPECT_EQ(bm.get_block_table(1).back()->get_references_count(), 2); } TEST(TestBlockManager, required_blocks_count) { - ov::genai::BlockManager bm = ov::genai::BlockManager(8); + ov::genai::BlockManager bm = ov::genai::BlockManager(8, false, 4); std::vector tokens = {0,1,2,3,4}; ov::genai::SequenceGroup::Ptr sequence_group = std::make_shared( diff --git a/tests/cpp/evictor.cpp b/tests/cpp/evictor.cpp new file mode 100644 index 0000000000..9867dfa2b5 --- /dev/null +++ b/tests/cpp/evictor.cpp @@ -0,0 +1,54 @@ +// Copyright (C) 2018-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#include +#include "openvino/runtime/core.hpp" +#include "scheduler.hpp" +#include +#include + +TEST(TestEvictor, general_test) { + ov::genai::Evictor evictor; + auto block0 = std::make_shared(0); + block0->set_hash(77, 1); + std::this_thread::sleep_until(std::chrono::system_clock::now() + std::chrono::seconds(1)); + auto block1 = std::make_shared(1); + block1->set_hash(56, 2); + std::this_thread::sleep_until(std::chrono::system_clock::now() + std::chrono::seconds(1)); + auto block2 = std::make_shared(2); + block2->set_hash(23, 3); + std::this_thread::sleep_until(std::chrono::system_clock::now() + std::chrono::seconds(1)); + evictor.add(block0->get_hash(), block0); + evictor.add(block1->get_hash(), block1); + evictor.add(block2->get_hash(), block2); + EXPECT_EQ(evictor.num_blocks(), 3); + + auto block = evictor.get_block(56); + EXPECT_EQ(block->get_index(), 1); + EXPECT_EQ(block->get_hash(), 56); + EXPECT_EQ(block->get_references_count(), 1); + EXPECT_EQ(evictor.num_blocks(), 2); + + EXPECT_EQ(evictor.get_block(44), nullptr); + EXPECT_EQ(evictor.num_blocks(), 2); + + EXPECT_EQ(evictor.get_lru_block()->get_index(), 0); + EXPECT_EQ(evictor.num_blocks(), 1); + + auto block3 = std::make_shared(7); + block3->set_hash(12, 4); + std::this_thread::sleep_until(std::chrono::system_clock::now() + std::chrono::seconds(1)); + auto block4 = std::make_shared(10); + block4->set_hash(99, 5); + std::this_thread::sleep_until(std::chrono::system_clock::now() + std::chrono::seconds(1)); + evictor.add(block3->get_hash(), block3); + evictor.add(block4->get_hash(), block4); + block2->set_timestamp(std::chrono::system_clock::now()); + + EXPECT_EQ(evictor.get_lru_block()->get_index(), 7); + EXPECT_EQ(evictor.get_lru_block()->get_index(), 10); + EXPECT_EQ(evictor.get_lru_block()->get_index(), 2); + EXPECT_EQ(evictor.get_lru_block(), nullptr); + EXPECT_EQ(evictor.num_blocks(), 0); +} diff --git a/tests/cpp/scheduler.cpp b/tests/cpp/scheduler.cpp index b4114dd1b2..82b104223c 100644 --- a/tests/cpp/scheduler.cpp +++ b/tests/cpp/scheduler.cpp @@ -366,3 +366,69 @@ TEST(TestScheduler, test_partially_preempted_prompt) { EXPECT_FALSE(scheduler.has_block_table(idx0)); } } + +TEST(TestScheduler, prefix_caching_test) { + std::array configs = {SchedulerConfig(), SchedulerConfig()}; + configs.at(0).max_num_batched_tokens = 32; + configs.at(0).num_kv_blocks = 100; + configs.at(0).block_size = 4; + configs.at(0).dynamic_split_fuse = false; + configs.at(0).max_num_seqs = 5; + configs.at(0).enable_prefix_caching = true; + configs.at(1).max_num_batched_tokens = 32; + configs.at(1).num_kv_blocks = 100; + configs.at(1).block_size = 4; + configs.at(1).dynamic_split_fuse = true; + configs.at(1).max_num_seqs = 5; + configs.at(1).enable_prefix_caching = true; + for (auto scheduler_config: configs) { + std::vector prompt_tokens = {0,1,2,3,4,5,6,7}; + std::vector histrory_tokens = {}; + // schedule prompt + Scheduler scheduler = Scheduler(scheduler_config); + + size_t chat_iterations = 10; + + for (size_t chat_iteration = 0; chat_iteration < chat_iterations; chat_iteration++) { + std::vector tokens = histrory_tokens; + tokens.insert(tokens.end(), prompt_tokens.begin(), prompt_tokens.end()); + SequenceGroup::Ptr sequence_group = std::make_shared(0, ov::Tensor(ov::element::i64, {tokens.size()}, tokens.data()), + ov::genai::greedy(), scheduler_config.block_size); + std::vector requests = {sequence_group}; + + auto out1 = scheduler.schedule(requests); + if (chat_iteration == 0) + EXPECT_EQ(out1.m_total_num_scheduled_tokens, prompt_tokens.size()); + else + EXPECT_EQ(out1.m_total_num_scheduled_tokens, prompt_tokens.size() + 1); + for (auto seq: requests) { + std::vector running_sequences = seq->get_running_sequences(); + running_sequences[0]->append_token(23, 0.7); + seq->finish_iteration(); + } + + // schedule generate + size_t num_generate_tokens = 10; + for (size_t i = 0; i < num_generate_tokens; i++) { + auto out2 = scheduler.schedule(requests); + EXPECT_EQ(out2.m_total_num_scheduled_tokens, 1); + for (auto seq: requests) { + std::vector running_sequences = seq->get_running_sequences(); + running_sequences[0]->append_token(16, 0.9); + seq->finish_iteration(); + } + } + + // finish sequence + auto sequence = requests[0]->get_running_sequences()[0]; + sequence->set_status(SequenceStatus::FINISHED); + auto idx0 = sequence->get_id(); + scheduler.free_sequence(idx0); + auto generated_ids = sequence->get_generated_ids(); + + histrory_tokens.insert(histrory_tokens.end(), prompt_tokens.begin(), prompt_tokens.end()); + histrory_tokens.insert(histrory_tokens.end(), generated_ids.begin(), generated_ids.end()); + } + } + +} \ No newline at end of file