diff --git a/nncf/common/graph/layer_attributes.py b/nncf/common/graph/layer_attributes.py index ce934c23b8c..6ef514a1645 100644 --- a/nncf/common/graph/layer_attributes.py +++ b/nncf/common/graph/layer_attributes.py @@ -95,7 +95,7 @@ def __init__( :param weight_requires_grad: Is True if gradients need to be computed for the corresponding Tensor, False otherwise. :param weight_shape: shape of weight tensor. - :param filter_dimension_idx: the axis along which the filters are stored. + :param filter_dimension_idx: the axis, along which the filters are stored. """ super().__init__(weight_requires_grad=weight_requires_grad, with_bias=with_bias) self.weight_shape = weight_shape diff --git a/nncf/common/graph/operator_metatypes.py b/nncf/common/graph/operator_metatypes.py index 305a3b66668..fc9d89f5f27 100644 --- a/nncf/common/graph/operator_metatypes.py +++ b/nncf/common/graph/operator_metatypes.py @@ -21,7 +21,7 @@ class OperatorMetatype: :param name: The name of the operator. :param hw_config_names: The names of the hardware configurations. - :param output_channel_axis: The axis along which the output channels of the operator are arranged. + :param output_channel_axis: The axis, along which the output channels of the operator are arranged. :param ignored_input_ports: Input ports of the operations that should not be considered for purposes of compression. """ diff --git a/nncf/common/pruning/tensor_processor.py b/nncf/common/pruning/tensor_processor.py index c7c57432059..e160c045120 100644 --- a/nncf/common/pruning/tensor_processor.py +++ b/nncf/common/pruning/tensor_processor.py @@ -28,7 +28,7 @@ def concatenate(cls, tensors: List[NNCFTensor], axis: int) -> NNCFTensor: Join a list of NNCFTensors along an existing axis. :param tensors: List of NNCFTensors. - :param axis: The axis along which the tensors will be joined. + :param axis: The axis, along which the tensors will be joined. :returns: The concatenated List of the tensors. """ diff --git a/nncf/common/tensor_statistics/collectors.py b/nncf/common/tensor_statistics/collectors.py index 894fe9a2a39..e1b01310216 100644 --- a/nncf/common/tensor_statistics/collectors.py +++ b/nncf/common/tensor_statistics/collectors.py @@ -358,7 +358,7 @@ def cat(x: List[NNCFTensor], axis: int) -> NNCFTensor: Join a sequence of arrays along an existing axis. :param x: The input tensor. - :param axis: The axis along which the arrays will be joined. + :param axis: The axis, along which the arrays will be joined. :return: The concatenated array. """ diff --git a/nncf/onnx/graph/node_utils.py b/nncf/onnx/graph/node_utils.py index 1e9a162211d..7d46356904c 100644 --- a/nncf/onnx/graph/node_utils.py +++ b/nncf/onnx/graph/node_utils.py @@ -152,11 +152,11 @@ def get_reduction_shape(shape: List[int], axis: int) -> ReductionAxes: def _get_weight_quantization_axis(node: NNCFNode, port_id: int) -> int: """ - Returns weight tensor axis along quantizer parameters are calculated. + Returns weight tensor axis, along which quantizer parameters are calculated. :param node: NNCFNode, which has a weight on input port_id. :param port_id: Input port id on which there is a weight of a node. - :return: Axis along quantizer parameters are calculated. + :return: Axis, along which quantizer parameters are calculated. """ weight_channel_axis = node.metatype.weight_channel_axis if node.layer_attributes.has_node_attrs(): @@ -174,9 +174,9 @@ def _get_weight_quantization_axis(node: NNCFNode, port_id: int) -> int: def _get_activation_quantization_axis() -> int: """ - Returns activation tensor axis along quantizer parameters are calculated. + Returns activation tensor axis, along which quantizer parameters are calculated. - :return: Axis along quantizer parameters are calculated. + :return: Axis, along which quantizer parameters are calculated. """ return 1 # Activations have channel first layout: [N, C, Z, Y, X] diff --git a/nncf/quantization/algorithms/weight_compression/openvino_backend.py b/nncf/quantization/algorithms/weight_compression/openvino_backend.py index a30b279d95b..a6b55a16889 100644 --- a/nncf/quantization/algorithms/weight_compression/openvino_backend.py +++ b/nncf/quantization/algorithms/weight_compression/openvino_backend.py @@ -9,7 +9,7 @@ # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass -from typing import List, Optional, Tuple, TypeVar, Union +from typing import List, Optional, Tuple, TypeVar import numpy as np import openvino.runtime as ov @@ -73,13 +73,23 @@ def do_compression( continue const_shape = nncf_node.layer_attributes.constant_attributes[weight_port_id]["shape"] channel_axes = get_weight_channel_axes(nncf_node, weight_port_id) - axes = get_channel_agnostic_reduction_axes(channel_axes, const_shape) + reduction_axes = get_channel_agnostic_reduction_axes(channel_axes, const_shape) + if isinstance(reduction_axes, tuple) and len(reduction_axes) != 1: + nncf_logger.warning( + f"Weight compression expects a single reduction axes, but given {len(reduction_axes)}. " + f"Weight shape: {const_shape}, reduction axes: {reduction_axes}, node name: {nncf_node.name}. " + "The node won't be quantized." + ) + continue + reduction_axis = reduction_axes[0] if isinstance(reduction_axes, tuple) else reduction_axes + fq_name = f"{weight_op_friendly_name}/fq_weights_{weight_port_id}" num_weights = np.prod(const_shape) - weight_params = WeightNodeParams(axes, num_weights, fq_name, weight_node, original_weight_dtype) + weight_params = WeightNodeParams( + reduction_axis, num_weights, fq_name, weight_node, original_weight_dtype + ) all_weight_params.append(weight_params) quantized_nodes_ids.add(id(weight_node)) - if mode != CompressWeightsMode.INT8: primary_config = WeightCompressionConfig(mode=mode, group_size=group_size) _assign_mixed_precision(all_weight_params, ratio, primary_config) @@ -98,7 +108,7 @@ def do_compression( config = wp.compression_config if config.mode == CompressWeightsMode.NF4: original_shape = weight.shape - norm_weight, scale = _get_norm_weight_and_nf4_scale(weight, wp.reduction_axes, group_size) + norm_weight, scale = _get_norm_weight_and_nf4_scale(weight, wp.reduction_axis, group_size) compressed_const = opset.constant(norm_weight, dtype=ov.Type.nf4, name=weight_name) convert = opset.convert(compressed_const, original_weight_dtype) mul = opset.multiply(convert, scale.astype(original_weight_dtype), name=wp.fq_name) @@ -107,7 +117,7 @@ def do_compression( last_output = mul.output(0) else: original_shape = weight.shape - compressed_weights, scale, zero_point = _do_integer_quantization(weight, wp.reduction_axes, config) + compressed_weights, scale, zero_point = _do_integer_quantization(weight, wp.reduction_axis, config) compression_type = np.uint8 if config.num_bits == 8 else ov.Type.u4 compressed_weights_node = opset.constant(compressed_weights, dtype=compression_type, name=weight_name) convert_weights_node = opset.convert(compressed_weights_node, original_weight_dtype) @@ -153,7 +163,7 @@ class WeightNodeParams: """ Information about weight node in the ov.Model that is useful for weight compression. - :param reduction_axes: Axis or axes along which to reduce (collect) different statistics (e.g. min, max). + :param reduction_axis: Axis, along which to reduce (collect) different statistics (e.g. min, max). :param num_weights: Number of elements in the weight array. :param fq_name: Name for the inserted weight compression operation. :param weight_node: The weight node itself. @@ -161,7 +171,7 @@ class WeightNodeParams: :param compression_config: Configuration of weight compression for the weight node. """ - reduction_axes: Union[int, Tuple[int]] + reduction_axis: int num_weights: int fq_name: str weight_node: ov.Node @@ -170,7 +180,7 @@ class WeightNodeParams: def _do_integer_quantization( - weight: np.ndarray, reduction_axes: Union[int, Tuple[int]], config: WeightCompressionConfig + weight: np.ndarray, reduction_axis: int, config: WeightCompressionConfig ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ The method quantizes the given weights to integer data type in accordance with the compression config. @@ -186,7 +196,7 @@ def _do_integer_quantization( (scales). :param weight: Weight array to compress. - :param reduction_axes: Axis or axes along which to reduce (collect) different statistics (e.g. min, max). + :param reduction_axis: Axis, along which to reduce (collect) different statistics (e.g. min, max). :param config: Information on how to compress (quantize) a specific weight. :return: The compressed weights, scale and zero point that was used for its quantization. """ @@ -200,16 +210,16 @@ def _do_integer_quantization( if group_size != -1: # weights are reshaped from [a1, r, a2] to [a1, r//gs, gs, a2] - weight, reduction_axes = _reshape_weights_for_grouped_quantization(weight, reduction_axes, group_size) + weight, reduction_axis = _reshape_weights_for_grouped_quantization(weight, reduction_axis, group_size) if mode in [CompressWeightsMode.INT8, CompressWeightsMode.INT4_ASYM]: - min_values = np.min(weight, axis=reduction_axes, keepdims=True) # [a1, r, a2] -> [a1, 1, a2] - max_values = np.max(weight, axis=reduction_axes, keepdims=True) # [a1, r, a2] -> [a1, 1, a2] + min_values = np.min(weight, axis=reduction_axis, keepdims=True) # [a1, r, a2] -> [a1, 1, a2] + max_values = np.max(weight, axis=reduction_axis, keepdims=True) # [a1, r, a2] -> [a1, 1, a2] scale, zero_point = calculate_scale_zero_point( min_values, max_values, level_low, level_high, narrow_range=False ) else: - scale = np.max(np.abs(weight), axis=reduction_axes, keepdims=True) # [a1, r//gs, 1, a2] + scale = np.max(np.abs(weight), axis=reduction_axis, keepdims=True) # [a1, r//gs, 1, a2] level_low_sym = -(2 ** (num_bits - 1)) level_high_sym = 2 ** (num_bits - 1) - 1 scale = scale / level_high_sym @@ -223,33 +233,31 @@ def _do_integer_quantization( return compressed_weights, scale, zero_point -def _get_integer_quantization_error( - weight: np.ndarray, reduction_axes: Union[int, Tuple[int]], config: WeightCompressionConfig -) -> float: +def _get_integer_quantization_error(weight: np.ndarray, reduction_axis: int, config: WeightCompressionConfig) -> float: """ Calculates a quantity characterizing the difference between floating point weights and fake quantized (compressed and decompressed) to integer ones. :param weight: Weight array to compress. - :param reduction_axes: Axis or axes along which to reduce (collect) different statistics (e.g. min, max). + :param reduction_axis: Axis, along which to reduce (collect) different statistics (e.g. min, max). :param config: Information on how to compress (quantize) a specific weight. :return: The quantity characterizing the error of integer quantization. """ orig_shape = weight.shape - compressed_weights, scale, zero_point = _do_integer_quantization(weight, reduction_axes, config) + compressed_weights, scale, zero_point = _do_integer_quantization(weight, reduction_axis, config) decompressed_weight = compressed_weights.astype(dtype=scale.dtype) decompressed_weight = (compressed_weights - zero_point) * scale decompressed_weight = decompressed_weight.reshape(orig_shape) diff = (decompressed_weight - weight) ** 2 - layer_err = np.mean(diff, axis=reduction_axes) + layer_err = np.mean(diff, axis=reduction_axis) val = np.max(layer_err) return val def _reshape_weights_for_grouped_quantization( - weight: np.ndarray, reduction_axes: Union[int, Tuple[int]], group_size: int + weight: np.ndarray, reduction_axis: int, group_size: int ) -> Tuple[np.ndarray, int]: """ Reshapes weights for group-wise quantization and return a new reduction axis for collecting statistics per group @@ -257,16 +265,12 @@ def _reshape_weights_for_grouped_quantization( [c_out, c_in // 128, 128]. :param weight: Weight array to compress. - :param reduction_axes: Axis or axes along which to reduce (collect) different statistics (e.g. min, max). + :param reduction_axis: Axis, along which to reduce (collect) different statistics (e.g. min, max). :param group_size: Number of weights (e.g. 128) in the channel dimension that share quantization parameters (scale). :return: reshaped weights and new reduction axis. """ assert group_size != -1 - if isinstance(reduction_axes, tuple) and len(reduction_axes) != 1: - raise RuntimeError( - f"group-quantization is supported for a single reduction axes, but got {len(reduction_axes)}" - ) - reduction_axis = reduction_axes[0] if isinstance(reduction_axes, tuple) else reduction_axes + assert isinstance(reduction_axis, int) channel_size = weight.shape[reduction_axis] if channel_size % group_size != 0: raise RuntimeError(f"Channel size {channel_size} should be divisible by size of group {group_size}") @@ -280,24 +284,24 @@ def _reshape_weights_for_grouped_quantization( def _get_norm_weight_and_nf4_scale( - weight: np.ndarray, reduction_axes: Tuple[int], group_size: int = -1 + weight: np.ndarray, reduction_axis: int, group_size: int = -1 ) -> Tuple[np.ndarray, np.ndarray]: """ Calculates scale for nf4 quantization and normalizes weights by the scale. Weights are reshaped in case of positive value of group size. :param weight: Weight array to compress. - :param reduction_axes: Axis or axes along which to reduce (collect) different statistics (e.g. min, max). + :param reduction_axis: Axis, along which to reduce (collect) different statistics (e.g. min, max). :param group_size: Number of weights (e.g. 128) in the channel dimension that share quantization parameters (scale). The value -1 means no grouping. Defaults to -1. :return: Normalized weights and nf4 scale. """ if group_size != -1: # weights are reshaped: [a1, r, a2] -> [a1, r//gs, gs, a2] - weight, reduction_axis = _reshape_weights_for_grouped_quantization(weight, reduction_axes, group_size) + weight, reduction_axis = _reshape_weights_for_grouped_quantization(weight, reduction_axis, group_size) scale = np.max(np.abs(weight), axis=reduction_axis, keepdims=True) # [a1, r//gs, 1, a2] else: - scale = np.max(np.abs(weight), axis=reduction_axes, keepdims=True) # [a1, 1, a2] + scale = np.max(np.abs(weight), axis=reduction_axis, keepdims=True) # [a1, 1, a2] eps = np.finfo(weight.dtype).eps # NOTE: adding machine epsilon to avoid division by zero scale[np.abs(scale) < eps] = eps @@ -372,8 +376,8 @@ def _assign_mixed_precision( for weight_param in track(all_weight_params[1:-1], description="Searching for Mixed-Precision Configuration"): weight = get_const_value(weight_param.weight_node) backup_config = weight_param.compression_config - reduction_axes = weight_param.reduction_axes - backup_error = _get_integer_quantization_error(weight, reduction_axes, backup_config) + reduction_axis = weight_param.reduction_axis + backup_error = _get_integer_quantization_error(weight, reduction_axis, backup_config) eps = np.finfo(weight.dtype).eps error = 1 / (backup_error + eps) errors.append(error) diff --git a/tests/openvino/native/quantization/test_weights_compression.py b/tests/openvino/native/quantization/test_weights_compression.py index 94501cae790..561d1927509 100644 --- a/tests/openvino/native/quantization/test_weights_compression.py +++ b/tests/openvino/native/quantization/test_weights_compression.py @@ -298,7 +298,7 @@ def __str__(self): @pytest.mark.parametrize("desc", LIST_DESCS, ids=map(str, LIST_DESCS)) def test_quantization_error_calculation(desc: QuantErrorDesc): weight = desc.weight - axis = (1,) + axis = 1 actual_error = _get_integer_quantization_error(weight, axis, desc.config) ref_error = desc.ref_error atol = desc.atol if desc.atol is not None else 1e-8 @@ -374,20 +374,20 @@ def test_weight_compress_with_ignored_scope(ignored_scope, num_compressed): @pytest.mark.parametrize("desc", CALCULATE_SCALE_DESCS) def test_calculate_scale_per_group(desc: CalculateScaleDesc): reshaped_weight, reduction_axis = _reshape_weights_for_grouped_quantization( - desc.weight, reduction_axes=desc.axis, group_size=desc.group_size + desc.weight, reduction_axis=desc.axis, group_size=desc.group_size ) act_scale = np.max(np.abs(reshaped_weight), axis=reduction_axis, keepdims=True) # [a1, r//gs, 1, a2] assert np.allclose(act_scale, desc.ref_scale) def test_raise_error_for_many_axes(): - with pytest.raises(RuntimeError): - _reshape_weights_for_grouped_quantization(WEIGHTS_2x4, reduction_axes=(0, 1), group_size=1) + with pytest.raises(AssertionError): + _reshape_weights_for_grouped_quantization(WEIGHTS_2x4, reduction_axis=(0, 1), group_size=1) -def test_raise_error_with_incorrect_group_size(): - with pytest.raises(RuntimeError): - _reshape_weights_for_grouped_quantization(WEIGHTS_2x4, reduction_axes=(0,), group_size=3) +def test_raise_error_with_tuple(): + with pytest.raises(AssertionError): + _reshape_weights_for_grouped_quantization(WEIGHTS_2x4, reduction_axis=(0,), group_size=3) def test_raise_error_with_int8_and_non_default_ratio(mocker):