diff --git a/docs/ModelZoo.md b/docs/ModelZoo.md
index 381784d2cbe..b17cabb54cc 100644
--- a/docs/ModelZoo.md
+++ b/docs/ModelZoo.md
@@ -45,7 +45,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
69.47 (0.30) |
Config |
- Download |
+ Download |
Inception V3 |
@@ -61,7 +61,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
77.45 (-0.12) |
Config |
- Download |
+ Download |
Inception V3 |
@@ -69,7 +69,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
76.36 (0.97) |
Config |
- Download |
+ Download |
MobileNet V2 |
@@ -85,7 +85,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
71.07 (0.80) |
Config |
- Download |
+ Download |
MobileNet V2 |
@@ -93,7 +93,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
71.24 (0.63) |
Config |
- Download |
+ Download |
MobileNet V2 |
@@ -101,7 +101,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
70.95 (0.92) |
Config |
- Download |
+ Download |
MobileNet V2 |
@@ -109,7 +109,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
71.09 (0.78) |
Config |
- Download |
+ Download |
MobileNet V3 (Small) |
@@ -125,7 +125,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
66.98 (0.68) |
Config |
- Download |
+ Download |
ResNet-18 |
@@ -141,7 +141,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
61.67 (8.09) |
Config |
- Download |
+ Download |
ResNet-18 |
@@ -149,7 +149,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
61.63 (8.13) |
Config |
- Download |
+ Download |
ResNet-18 |
@@ -157,7 +157,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
69.27 (0.49) |
Config |
- Download |
+ Download |
ResNet-18 |
@@ -165,7 +165,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
69.31 (0.45) |
Config |
- Download |
+ Download |
ResNet-18 |
@@ -189,7 +189,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
73.11 (0.19) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -205,7 +205,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
76.46 (-0.31) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -213,7 +213,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
76.39 (-0.24) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -221,7 +221,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
76.05 (0.10) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -229,7 +229,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
75.42 (0.73) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -237,7 +237,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
75.50 (0.65) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -245,7 +245,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
75.57 (0.58) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -269,7 +269,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
58.22 (-0.03) |
Config |
- Download |
+ Download |
SqueezeNet V1.1 |
@@ -277,7 +277,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
58.11 (0.08) |
Config |
- Download |
+ Download |
SqueezeNet V1.1 |
@@ -285,7 +285,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
57.57 (0.62) |
Config |
- Download |
+ Download |
@@ -310,7 +310,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
62.23 |
Config |
- Download |
+ Download |
SSD300‑MobileNet |
@@ -318,7 +318,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
62.95 (-0.72) |
Config |
- Download |
+ Download |
SSD300‑VGG‑BN |
@@ -326,7 +326,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
78.28 |
Config |
- Download |
+ Download |
SSD300‑VGG‑BN |
@@ -334,7 +334,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
77.81 (0.47) |
Config |
- Download |
+ Download |
SSD300‑VGG‑BN |
@@ -342,7 +342,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
77.66 (0.62) |
Config |
- Download |
+ Download |
SSD300‑VGG‑BN |
@@ -350,7 +350,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
78.35 (-0.07) |
Config |
- Download |
+ Download |
SSD512-VGG‑BN |
@@ -358,7 +358,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
80.26 |
Config |
- Download |
+ Download |
SSD512-VGG‑BN |
@@ -366,7 +366,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
80.04 (0.22) |
Config |
- Download |
+ Download |
SSD512-VGG‑BN |
@@ -374,7 +374,7 @@ The applied quantization compression algorithms are divided into two broad categ
VOC12+07 train, VOC07 eval |
79.68 (0.58) |
Config |
- Download |
+ Download |
@@ -399,7 +399,7 @@ The applied quantization compression algorithms are divided into two broad categ
CamVid |
67.89 |
Config |
- Download |
+ Download |
ICNet |
@@ -407,7 +407,7 @@ The applied quantization compression algorithms are divided into two broad categ
CamVid |
67.89 (0.00) |
Config |
- Download |
+ Download |
ICNet |
@@ -415,7 +415,7 @@ The applied quantization compression algorithms are divided into two broad categ
CamVid |
67.16 (0.73) |
Config |
- Download |
+ Download |
UNet |
@@ -423,7 +423,7 @@ The applied quantization compression algorithms are divided into two broad categ
CamVid |
71.95 |
Config |
- Download |
+ Download |
UNet |
@@ -431,7 +431,7 @@ The applied quantization compression algorithms are divided into two broad categ
CamVid |
71.89 (0.06) |
Config |
- Download |
+ Download |
UNet |
@@ -439,7 +439,7 @@ The applied quantization compression algorithms are divided into two broad categ
CamVid |
72.46 (-0.51) |
Config |
- Download |
+ Download |
UNet |
@@ -447,7 +447,7 @@ The applied quantization compression algorithms are divided into two broad categ
Mapillary |
56.24 |
Config |
- Download |
+ Download |
UNet |
@@ -455,7 +455,7 @@ The applied quantization compression algorithms are divided into two broad categ
Mapillary |
56.09 (0.15) |
Config |
- Download |
+ Download |
UNet |
@@ -463,7 +463,7 @@ The applied quantization compression algorithms are divided into two broad categ
Mapillary |
55.69 (0.55) |
Config |
- Download |
+ Download |
UNet |
@@ -471,7 +471,7 @@ The applied quantization compression algorithms are divided into two broad categ
Mapillary |
55.64 (0.60) |
Config |
- Download |
+ Download |
@@ -569,7 +569,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
78.39 (-0.48) |
Config |
- Download |
+ Download |
Inception V3 |
@@ -577,7 +577,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
77.52 (0.39) |
Config |
- Download |
+ Download |
Inception V3 |
@@ -585,7 +585,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
77.86 (0.05) |
Config |
- Download |
+ Download |
MobileNet V2 |
@@ -601,7 +601,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
71.63 (0.22) |
Config |
- Download |
+ Download |
MobileNet V2 |
@@ -609,7 +609,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
70.94 (0.91) |
Config |
- Download |
+ Download |
MobileNet V2 |
@@ -617,7 +617,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
71.34 (0.51) |
Config |
- Download |
+ Download |
MobileNet V2 (TensorFlow Hub MobileNet V2) |
@@ -625,7 +625,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
71.87 (-0.02) |
Config |
- Download |
+ Download |
MobileNet V3 (Large) |
@@ -641,7 +641,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
75.04 (0.76) |
Config |
- Download |
+ Download |
MobileNet V3 (Large) |
@@ -649,7 +649,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
75.24 (0.56) |
Config |
- Download |
+ Download |
MobileNet V3 (Small) |
@@ -665,7 +665,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
67.79 (0.59) |
Config |
- Download |
+ Download |
MobileNet V3 (Small) |
@@ -673,7 +673,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
67.44 (0.94) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -689,7 +689,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
74.99 (0.06) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -697,7 +697,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
74.36 (0.69) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -705,7 +705,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
74.38 (0.67) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -713,7 +713,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
74.96 (0.09) |
Config |
- Download |
+ Download |
ResNet-50 |
@@ -721,7 +721,7 @@ The applied quantization compression algorithms are divided into two broad categ
ImageNet |
75.09 (-0.04) |
Config |
- Download |
+ Download |
ResNet50 |
@@ -754,7 +754,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
33.43 |
Config |
- Download |
+ Download |
RetinaNet |
@@ -762,7 +762,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
33.12 (0.31) |
Config |
- Download |
+ Download |
RetinaNet |
@@ -770,7 +770,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
33.10 (0.33) |
Config |
- Download |
+ Download |
RetinaNet |
@@ -778,7 +778,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
32.72 (0.71) |
Config |
- Download |
+ Download |
RetinaNet |
@@ -786,7 +786,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
32.67 (0.76) |
Config |
- Download |
+ Download |
YOLO v4 |
@@ -794,7 +794,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
47.07 |
Config |
- Download |
+ Download |
YOLO v4 |
@@ -802,7 +802,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
46.20 (0.87) |
Config |
- Download |
+ Download |
YOLO v4 |
@@ -810,7 +810,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
46.49 (0.58) |
Config |
- Download |
+ Download |
@@ -835,7 +835,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
bbox: 37.33 segm: 33.56 |
Config |
- Download |
+ Download |
Mask‑R‑CNN |
@@ -843,7 +843,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
bbox: 37.19 (0.14) segm: 33.54 (0.02) |
Config |
- Download |
+ Download |
Mask‑R‑CNN |
@@ -851,7 +851,7 @@ The applied quantization compression algorithms are divided into two broad categ
COCO 2017 |
bbox: 36.94 (0.39) segm: 33.23 (0.33) |
Config |
- Download |
+ Download |
diff --git a/examples/tensorflow/object_detection/README.md b/examples/tensorflow/object_detection/README.md
index 9c27d9aa636..dd1adc4a608 100644
--- a/examples/tensorflow/object_detection/README.md
+++ b/examples/tensorflow/object_detection/README.md
@@ -66,7 +66,7 @@ The [COCO2017](https://cocodataset.org/) dataset in TFRecords format should be s
- If you did not install the package, add the repository root folder to the `PYTHONPATH` environment variable.
- Go to the `examples/tensorflow/object_detection` folder.
-- Download the pre-trained weights in H5 format for either [RetinaNet](https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/retinanet_coco.tar.gz) or [YOLOv4](https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/yolo_v4_coco.tar.gz) and provide the path to them using `--weights` flag.
+- Download the pre-trained weights in H5 format for either [RetinaNet](https://storage.openvinotoolkit.org/repositories/nncf/models/v2.6.0/tensorflow/retinanet_coco.tar.gz) or [YOLOv4](https://storage.openvinotoolkit.org/repositories/nncf/models/v2.6.0/tensorflow/yolo_v4_coco.tar.gz) and provide the path to them using `--weights` flag.
- (Optional) Before compressing a model, it is highly recommended checking the accuracy of the pretrained model, use the following command:
```bash
diff --git a/examples/tensorflow/segmentation/README.md b/examples/tensorflow/segmentation/README.md
index 7dfb531ffcf..4ef9353d0cd 100644
--- a/examples/tensorflow/segmentation/README.md
+++ b/examples/tensorflow/segmentation/README.md
@@ -52,7 +52,7 @@ We can run the sample after data preparation. For this follow these steps:
- If you did not install the package, add the repository root folder to the `PYTHONPATH` environment variable.
- Go to the `examples/tensorflow/segmentation` folder.
-- Download the pre-trained Mask-R-CNN [weights](https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/mask_rcnn_coco.tar.gz) in checkpoint format and provide the path to them using `--weights` flag.
+- Download the pre-trained Mask-R-CNN [weights](https://storage.openvinotoolkit.org/repositories/nncf/models/v2.6.0/tensorflow/mask_rcnn_coco.tar.gz) in checkpoint format and provide the path to them using `--weights` flag.
- Specify the GPUs to be used for training by setting the environment variable [`CUDA_VISIBLE_DEVICES`](https://developer.nvidia.com/blog/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/). This is necessary because training and validation during training must be performed on different GPU devices. Please note that usually only one GPU is required for validation during training.
- (Optional) Before compressing a model, it is highly recommended checking the accuracy of the pretrained model, use the following command:
diff --git a/tools/update_eval_results.py b/tools/update_eval_results.py
index 58744599409..1197785e1f5 100644
--- a/tools/update_eval_results.py
+++ b/tools/update_eval_results.py
@@ -41,7 +41,7 @@
# python tools/update_eval_results.py -f tf -r path/to/metrics.json -i
-BASE_CHECKPOINT_URL = "https://storage.openvinotoolkit.org/repositories/nncf/models/develop/"
+BASE_CHECKPOINT_URL = "https://storage.openvinotoolkit.org/repositories/nncf/models/v2.6.0/"
@dataclass