diff --git a/docs/ModelZoo.md b/docs/ModelZoo.md index 381784d2cbe..b17cabb54cc 100644 --- a/docs/ModelZoo.md +++ b/docs/ModelZoo.md @@ -45,7 +45,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 69.47 (0.30) Config - Download + Download Inception V3 @@ -61,7 +61,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 77.45 (-0.12) Config - Download + Download Inception V3 @@ -69,7 +69,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 76.36 (0.97) Config - Download + Download MobileNet V2 @@ -85,7 +85,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 71.07 (0.80) Config - Download + Download MobileNet V2 @@ -93,7 +93,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 71.24 (0.63) Config - Download + Download MobileNet V2 @@ -101,7 +101,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 70.95 (0.92) Config - Download + Download MobileNet V2 @@ -109,7 +109,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 71.09 (0.78) Config - Download + Download MobileNet V3 (Small) @@ -125,7 +125,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 66.98 (0.68) Config - Download + Download ResNet-18 @@ -141,7 +141,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 61.67 (8.09) Config - Download + Download ResNet-18 @@ -149,7 +149,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 61.63 (8.13) Config - Download + Download ResNet-18 @@ -157,7 +157,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 69.27 (0.49) Config - Download + Download ResNet-18 @@ -165,7 +165,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 69.31 (0.45) Config - Download + Download ResNet-18 @@ -189,7 +189,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 73.11 (0.19) Config - Download + Download ResNet-50 @@ -205,7 +205,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 76.46 (-0.31) Config - Download + Download ResNet-50 @@ -213,7 +213,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 76.39 (-0.24) Config - Download + Download ResNet-50 @@ -221,7 +221,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 76.05 (0.10) Config - Download + Download ResNet-50 @@ -229,7 +229,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 75.42 (0.73) Config - Download + Download ResNet-50 @@ -237,7 +237,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 75.50 (0.65) Config - Download + Download ResNet-50 @@ -245,7 +245,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 75.57 (0.58) Config - Download + Download ResNet-50 @@ -269,7 +269,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 58.22 (-0.03) Config - Download + Download SqueezeNet V1.1 @@ -277,7 +277,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 58.11 (0.08) Config - Download + Download SqueezeNet V1.1 @@ -285,7 +285,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 57.57 (0.62) Config - Download + Download @@ -310,7 +310,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 62.23 Config - Download + Download SSD300‑MobileNet @@ -318,7 +318,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 62.95 (-0.72) Config - Download + Download SSD300‑VGG‑BN @@ -326,7 +326,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 78.28 Config - Download + Download SSD300‑VGG‑BN @@ -334,7 +334,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 77.81 (0.47) Config - Download + Download SSD300‑VGG‑BN @@ -342,7 +342,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 77.66 (0.62) Config - Download + Download SSD300‑VGG‑BN @@ -350,7 +350,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 78.35 (-0.07) Config - Download + Download SSD512-VGG‑BN @@ -358,7 +358,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 80.26 Config - Download + Download SSD512-VGG‑BN @@ -366,7 +366,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 80.04 (0.22) Config - Download + Download SSD512-VGG‑BN @@ -374,7 +374,7 @@ The applied quantization compression algorithms are divided into two broad categ VOC12+07 train, VOC07 eval 79.68 (0.58) Config - Download + Download @@ -399,7 +399,7 @@ The applied quantization compression algorithms are divided into two broad categ CamVid 67.89 Config - Download + Download ICNet @@ -407,7 +407,7 @@ The applied quantization compression algorithms are divided into two broad categ CamVid 67.89 (0.00) Config - Download + Download ICNet @@ -415,7 +415,7 @@ The applied quantization compression algorithms are divided into two broad categ CamVid 67.16 (0.73) Config - Download + Download UNet @@ -423,7 +423,7 @@ The applied quantization compression algorithms are divided into two broad categ CamVid 71.95 Config - Download + Download UNet @@ -431,7 +431,7 @@ The applied quantization compression algorithms are divided into two broad categ CamVid 71.89 (0.06) Config - Download + Download UNet @@ -439,7 +439,7 @@ The applied quantization compression algorithms are divided into two broad categ CamVid 72.46 (-0.51) Config - Download + Download UNet @@ -447,7 +447,7 @@ The applied quantization compression algorithms are divided into two broad categ Mapillary 56.24 Config - Download + Download UNet @@ -455,7 +455,7 @@ The applied quantization compression algorithms are divided into two broad categ Mapillary 56.09 (0.15) Config - Download + Download UNet @@ -463,7 +463,7 @@ The applied quantization compression algorithms are divided into two broad categ Mapillary 55.69 (0.55) Config - Download + Download UNet @@ -471,7 +471,7 @@ The applied quantization compression algorithms are divided into two broad categ Mapillary 55.64 (0.60) Config - Download + Download @@ -569,7 +569,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 78.39 (-0.48) Config - Download + Download Inception V3 @@ -577,7 +577,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 77.52 (0.39) Config - Download + Download Inception V3 @@ -585,7 +585,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 77.86 (0.05) Config - Download + Download MobileNet V2 @@ -601,7 +601,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 71.63 (0.22) Config - Download + Download MobileNet V2 @@ -609,7 +609,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 70.94 (0.91) Config - Download + Download MobileNet V2 @@ -617,7 +617,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 71.34 (0.51) Config - Download + Download MobileNet V2 (TensorFlow Hub MobileNet V2) @@ -625,7 +625,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 71.87 (-0.02) Config - Download + Download MobileNet V3 (Large) @@ -641,7 +641,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 75.04 (0.76) Config - Download + Download MobileNet V3 (Large) @@ -649,7 +649,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 75.24 (0.56) Config - Download + Download MobileNet V3 (Small) @@ -665,7 +665,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 67.79 (0.59) Config - Download + Download MobileNet V3 (Small) @@ -673,7 +673,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 67.44 (0.94) Config - Download + Download ResNet-50 @@ -689,7 +689,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 74.99 (0.06) Config - Download + Download ResNet-50 @@ -697,7 +697,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 74.36 (0.69) Config - Download + Download ResNet-50 @@ -705,7 +705,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 74.38 (0.67) Config - Download + Download ResNet-50 @@ -713,7 +713,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 74.96 (0.09) Config - Download + Download ResNet-50 @@ -721,7 +721,7 @@ The applied quantization compression algorithms are divided into two broad categ ImageNet 75.09 (-0.04) Config - Download + Download ResNet50 @@ -754,7 +754,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 33.43 Config - Download + Download RetinaNet @@ -762,7 +762,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 33.12 (0.31) Config - Download + Download RetinaNet @@ -770,7 +770,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 33.10 (0.33) Config - Download + Download RetinaNet @@ -778,7 +778,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 32.72 (0.71) Config - Download + Download RetinaNet @@ -786,7 +786,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 32.67 (0.76) Config - Download + Download YOLO v4 @@ -794,7 +794,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 47.07 Config - Download + Download YOLO v4 @@ -802,7 +802,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 46.20 (0.87) Config - Download + Download YOLO v4 @@ -810,7 +810,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 46.49 (0.58) Config - Download + Download @@ -835,7 +835,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 bbox: 37.33
segm: 33.56 Config - Download + Download Mask‑R‑CNN @@ -843,7 +843,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 bbox: 37.19 (0.14)
segm: 33.54 (0.02) Config - Download + Download Mask‑R‑CNN @@ -851,7 +851,7 @@ The applied quantization compression algorithms are divided into two broad categ COCO 2017 bbox: 36.94 (0.39)
segm: 33.23 (0.33) Config - Download + Download diff --git a/examples/tensorflow/object_detection/README.md b/examples/tensorflow/object_detection/README.md index 9c27d9aa636..dd1adc4a608 100644 --- a/examples/tensorflow/object_detection/README.md +++ b/examples/tensorflow/object_detection/README.md @@ -66,7 +66,7 @@ The [COCO2017](https://cocodataset.org/) dataset in TFRecords format should be s - If you did not install the package, add the repository root folder to the `PYTHONPATH` environment variable. - Go to the `examples/tensorflow/object_detection` folder. -- Download the pre-trained weights in H5 format for either [RetinaNet](https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/retinanet_coco.tar.gz) or [YOLOv4](https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/yolo_v4_coco.tar.gz) and provide the path to them using `--weights` flag. +- Download the pre-trained weights in H5 format for either [RetinaNet](https://storage.openvinotoolkit.org/repositories/nncf/models/v2.6.0/tensorflow/retinanet_coco.tar.gz) or [YOLOv4](https://storage.openvinotoolkit.org/repositories/nncf/models/v2.6.0/tensorflow/yolo_v4_coco.tar.gz) and provide the path to them using `--weights` flag. - (Optional) Before compressing a model, it is highly recommended checking the accuracy of the pretrained model, use the following command: ```bash diff --git a/examples/tensorflow/segmentation/README.md b/examples/tensorflow/segmentation/README.md index 7dfb531ffcf..4ef9353d0cd 100644 --- a/examples/tensorflow/segmentation/README.md +++ b/examples/tensorflow/segmentation/README.md @@ -52,7 +52,7 @@ We can run the sample after data preparation. For this follow these steps: - If you did not install the package, add the repository root folder to the `PYTHONPATH` environment variable. - Go to the `examples/tensorflow/segmentation` folder. -- Download the pre-trained Mask-R-CNN [weights](https://storage.openvinotoolkit.org/repositories/nncf/models/develop/tensorflow/mask_rcnn_coco.tar.gz) in checkpoint format and provide the path to them using `--weights` flag. +- Download the pre-trained Mask-R-CNN [weights](https://storage.openvinotoolkit.org/repositories/nncf/models/v2.6.0/tensorflow/mask_rcnn_coco.tar.gz) in checkpoint format and provide the path to them using `--weights` flag. - Specify the GPUs to be used for training by setting the environment variable [`CUDA_VISIBLE_DEVICES`](https://developer.nvidia.com/blog/cuda-pro-tip-control-gpu-visibility-cuda_visible_devices/). This is necessary because training and validation during training must be performed on different GPU devices. Please note that usually only one GPU is required for validation during training. - (Optional) Before compressing a model, it is highly recommended checking the accuracy of the pretrained model, use the following command: diff --git a/tools/update_eval_results.py b/tools/update_eval_results.py index 58744599409..1197785e1f5 100644 --- a/tools/update_eval_results.py +++ b/tools/update_eval_results.py @@ -41,7 +41,7 @@ # python tools/update_eval_results.py -f tf -r path/to/metrics.json -i -BASE_CHECKPOINT_URL = "https://storage.openvinotoolkit.org/repositories/nncf/models/develop/" +BASE_CHECKPOINT_URL = "https://storage.openvinotoolkit.org/repositories/nncf/models/v2.6.0/" @dataclass