-
Notifications
You must be signed in to change notification settings - Fork 240
/
algorithm.py
487 lines (419 loc) · 20.5 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
# Copyright (c) 2025 Intel Corporation
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from typing import Iterable, List, Optional, Tuple, TypeVar
import nncf
from nncf.common.factory import NNCFGraphFactory
from nncf.common.graph import NNCFGraph
from nncf.common.graph import NNCFNode
from nncf.common.graph.utils import get_number_of_quantized_ops
from nncf.common.logging import nncf_logger
from nncf.common.quantization.quantizer_removal import revert_operations_to_floating_point_precision
from nncf.common.utils.backend import BackendType
from nncf.common.utils.backend import get_backend
from nncf.common.utils.os import get_available_cpu_count
from nncf.common.utils.os import get_available_memory_amount
from nncf.data.dataset import Dataset
from nncf.parameters import DropType
from nncf.quantization.advanced_parameters import RestoreMode
from nncf.quantization.algorithms.accuracy_control.backend import AccuracyControlAlgoBackend
from nncf.quantization.algorithms.accuracy_control.evaluator import Evaluator
from nncf.quantization.algorithms.accuracy_control.evaluator import MetricResults
from nncf.quantization.algorithms.accuracy_control.ranker import Ranker
TModel = TypeVar("TModel")
TTensor = TypeVar("TTensor")
PREPARATION_MODEL_THRESHOLD = 1
OVERHEAD_COEFFICIENT = 2
MEMORY_INCREASE_COEFFICIENT = 2
def get_algo_backend(backend: BackendType) -> AccuracyControlAlgoBackend:
"""
Returns backend for accuracy control algorithm.
:param backend: Backend.
:return: The backend for accuracy control algorithm.
"""
if backend == BackendType.OPENVINO:
from nncf.quantization.algorithms.accuracy_control.openvino_backend import OVAccuracyControlAlgoBackend
return OVAccuracyControlAlgoBackend()
if backend == BackendType.ONNX:
from nncf.quantization.algorithms.accuracy_control.onnx_backend import ONNXAccuracyControlAlgoBackend
return ONNXAccuracyControlAlgoBackend()
raise nncf.UnsupportedBackendError(
f"Cannot create the backend for the accuracy control algorithm because {backend} is not supported."
)
def _create_message(nodes: Iterable[NNCFNode]) -> str:
names = [f"\t{x.node_name}" for x in nodes]
return "\n".join(names)
def calculate_accuracy_drop(
initial_metric: float, quantized_metric: float, max_drop: float, drop_type: DropType
) -> Tuple[bool, Optional[float]]:
"""
Calculates accuracy drop and termination boolean flag.
:param initial_metric: Metric value for initial model.
:param quantized_metric: Metric value for quantized model.
:param max_drop: Maximum accuracy drop that should be achieved.
:param drop_type: Accuracy drop type.
:return: A tuple (should_terminate, accuracy_drop) where:
- should_terminate: Whether the algorithm should terminate or not.
- accuracy_drop: Accuracy drop value.
"""
should_terminate = None
accuracy_drop = None
if quantized_metric >= initial_metric:
drop_values_by_drop_type = {
DropType.RELATIVE: None,
DropType.ABSOLUTE: initial_metric - quantized_metric,
}
accuracy_drop = drop_values_by_drop_type[drop_type]
should_terminate = True
else:
drop_values_by_drop_type = {
DropType.RELATIVE: abs(1 - quantized_metric / initial_metric),
DropType.ABSOLUTE: initial_metric - quantized_metric,
}
accuracy_drop = drop_values_by_drop_type[drop_type]
should_terminate = accuracy_drop <= max_drop
return should_terminate, accuracy_drop
class QuantizationAccuracyRestorerReport:
"""
Contains execution information about accuracy-aware algorithm.
:param removed_groups: All groups of quantizers which were removed.
:param removed_all: True if all quantizers were removed, False otherwise.
:param reached_required_drop: True if the required accuracy drop was reached, False otherwise.
:param num_quantized_operations: Number of quantized operations in the model.
:param num_iterations: Number of iterations performed.
"""
def __init__(self):
self.removed_groups = []
self.removed_all = False
self.reached_required_drop = False
self.num_quantized_operations = None
self.num_iterations = None
@property
def removed_quantizers(self) -> List[NNCFNode]:
"""
Returns all removed quantizers during accuracy-aware algorithm.
"""
quantizers = []
for group in self.removed_groups:
quantizers.extend(group.quantizers)
return quantizers
@property
def reverted_operations(self) -> List[NNCFNode]:
"""
Returns all operations which were reverted to original precision
during accuracy-aware algorithm.
"""
operations = []
for group in self.removed_groups:
operations.extend(group.operations)
return operations
class QuantizationAccuracyRestorer:
"""
Implementation of the accuracy-aware loop.
"""
def __init__(
self,
ranking_subset_size: int = 300,
max_num_iterations: int = sys.maxsize,
max_drop: float = 0.01,
drop_type: DropType = DropType.ABSOLUTE,
num_ranking_workers: Optional[int] = None,
restore_mode: RestoreMode = RestoreMode.ACTIVATIONS_AND_WEIGHTS,
):
"""
:param ranking_subset_size: The number of data items that will be selected from
the dataset to rank groups of quantizers.
:param max_num_iterations: A maximal number of iterations.
:param max_drop: The maximum accuracy drop that should be achieved.
:param drop_type: The accuracy drop type, which determines how the maximum
accuracy drop between the original model and the compressed model is
calculated.
:param num_ranking_workers: The number of parallel workers that are used to rank
quantization operations.
:param restore_mode: Restore mode.
"""
self.ranking_subset_size = ranking_subset_size
self.max_num_iterations = max_num_iterations
self.max_drop = max_drop
self.drop_type = drop_type
self.num_ranking_workers = num_ranking_workers
self.restore_mode = restore_mode
def apply(
self,
initial_model: TModel,
initial_metric_results: MetricResults,
quantized_model: TModel,
quantized_metric_results: MetricResults,
validation_dataset: Dataset,
validation_dataset_size: int,
evaluator: Evaluator,
) -> TModel:
"""
Restores the accuracy of the quantized model by removing the groups of quantizers
that contribute the most to the drop in accuracy.
:param initial_model: Initial model (not quantized).
:param initial_metric_results: Initial model metrics.
:param quantized_model: Quantized model.
:param quantized_metric_results: Quantized model metrics.
:param validation_dataset: A dataset for the validation process.
:param validation_dataset_size: Validation dataset size.
:param evaluator: The instance of `Evaluator` to validate model and collect values
for each item from dataset.
:return: The quantized model whose metric `final_metric` is satisfied
the maximum accuracy drop condition.
"""
algo_backend = get_algo_backend(get_backend(initial_model))
should_terminate, accuracy_drop = calculate_accuracy_drop(
initial_metric_results.metric_value, quantized_metric_results.metric_value, self.max_drop, self.drop_type
)
if should_terminate:
QuantizationAccuracyRestorer._print_completion_message(accuracy_drop, self.drop_type)
return quantized_model
nncf_logger.info(f"Accuracy drop: {accuracy_drop} ({self.drop_type})")
# Accuracy drop is greater than the maximum drop so we need to restore accuracy
return self._apply(
initial_model,
initial_metric_results,
quantized_model,
quantized_metric_results,
validation_dataset,
validation_dataset_size,
evaluator,
accuracy_drop,
algo_backend,
)
def _apply(
self,
initial_model: TModel,
initial_metric_results: MetricResults,
quantized_model: TModel,
quantized_metric_results: MetricResults,
validation_dataset: Dataset,
validation_dataset_size: int,
evaluator: Evaluator,
accuracy_drop: float,
algo_backend: AccuracyControlAlgoBackend,
) -> TModel:
"""
An internal function that implements an iterative approach to restoring the accuracy of
the quantized model by removing the groups of quantizers that contribute the most to
the drop in accuracy.
:param initial_model: Initial model (not quantized).
:param initial_metric_results: Initial model metrics.
:param quantized_model: Quantized model.
:param quantized_metric_results: Quantized model metrics.
:param validation_dataset: A dataset for the validation process.
:param validation_dataset_size: Validation dataset size.
:param evaluator: The instance of `Evaluator` to validate model and collect values
for each item from dataset.
:param accuracy_drop: Accuracy drop between initial and quantized models.
:param algo_backend: The `AccuracyControlAlgoBackend` algo backend.
:return: The quantized model whose metric `final_metric` is satisfied
the maximum accuracy drop condition.
"""
initial_model_graph = NNCFGraphFactory.create(initial_model)
quantized_model_graph = NNCFGraphFactory.create(quantized_model)
# Collect original biases and weights because these values are
# required to undo bias correction and weight correction.
# Store this data inside the `node.attributes` dictionary.
# This data will be used in the `revert_operations_to_floating_point_precision()` method.
QuantizationAccuracyRestorer._collect_original_biases_and_weights(
initial_model_graph, quantized_model_graph, initial_model, algo_backend
)
# Show the number of quantized operations in the model.
report = QuantizationAccuracyRestorerReport()
report.num_quantized_operations = get_number_of_quantized_ops(
quantized_model_graph, algo_backend.get_quantizer_metatypes(), algo_backend.get_quantizable_metatypes()
)
nncf_logger.info(f"Total number of quantized operations in the model: {report.num_quantized_operations}")
# Calculate number of parallel processes for Ranker
num_ranking_workers = self.num_ranking_workers
if num_ranking_workers is None:
model_size = algo_backend.get_model_size(quantized_model)
num_ranking_workers = self._calculate_number_ranker_workers(
model_size,
quantized_metric_results.preparation_time,
quantized_metric_results.validation_time,
validation_dataset_size,
)
nncf_logger.info(f"Number of parallel workers to rank quantized operations: {num_ranking_workers}")
ranker = Ranker(self.ranking_subset_size, validation_dataset, algo_backend, evaluator, num_ranking_workers)
groups_to_rank = ranker.find_groups_of_quantizers_to_rank(quantized_model_graph)
ranked_groups = ranker.rank_groups_of_quantizers(
groups_to_rank,
quantized_model,
quantized_model_graph,
initial_metric_results.values_for_each_item,
quantized_metric_results.values_for_each_item,
)
previous_model = quantized_model
previous_approximate_values_for_each_item = quantized_metric_results.values_for_each_item
previous_accuracy_drop = accuracy_drop
current_model = None
current_approximate_values_for_each_item = None
current_accuracy_drop = None
is_step_back = True
nncf_logger.info("Changing the scope of quantizer nodes was started")
for iteration in range(self.max_num_iterations):
if current_model is not None:
previous_model = current_model
# greedy removal of the FQ node with the highest importance score
current_group = ranked_groups.pop()
current_model = revert_operations_to_floating_point_precision(
current_group.operations,
current_group.quantizers,
previous_model,
quantized_model_graph,
self.restore_mode,
algo_backend.get_op_with_weights_metatypes(),
algo_backend.is_node_with_weight,
algo_backend.get_weight_tensor_port_ids,
)
report.removed_groups.append(current_group)
nncf_logger.debug(
f"Removed a block of {len(current_group.quantizers)} quantizers:"
f"\n{_create_message(current_group.quantizers)}"
)
nncf_logger.info(
f"Reverted {len(current_group.operations)} operations to the floating-point "
f"precision: \n{_create_message(current_group.operations)}"
)
# Calculate drop for new quantization scope.
current_metric, current_approximate_values_for_each_item = evaluator.validate(
current_model, validation_dataset
)
should_terminate, current_accuracy_drop = calculate_accuracy_drop(
initial_metric_results.metric_value, current_metric, self.max_drop, self.drop_type
)
if not ranked_groups:
nncf_logger.info(
"All layers have been checked and the AccuracyAwareQuantization "
"will not be able to achieve the required accuracy drop"
)
report.removed_all = True
break
# Accuracy was restored to the acceptable drop.
if should_terminate:
report.reached_required_drop = True
QuantizationAccuracyRestorer._print_completion_message(current_accuracy_drop, self.drop_type)
break
nncf_logger.info(
f"Accuracy drop with the new quantization scope is {float(current_accuracy_drop)} ({self.drop_type})"
)
# Continue greedy quantizer remove
if current_accuracy_drop <= previous_accuracy_drop or (
current_accuracy_drop > previous_accuracy_drop and is_step_back
):
is_step_back = False
previous_accuracy_drop = current_accuracy_drop
continue
if current_accuracy_drop > previous_accuracy_drop:
current_model = previous_model
current_approximate_values_for_each_item = previous_approximate_values_for_each_item
report.removed_groups.pop()
ranked_groups.append(current_group)
is_step_back = True
previous_accuracy_drop = current_accuracy_drop
nncf_logger.info("Re-calculating ranking scores for remaining groups")
if current_approximate_values_for_each_item is None:
current_approximate_values_for_each_item = evaluator.collect_values_for_each_item(
current_model, validation_dataset
)
ranked_groups = ranker.rank_groups_of_quantizers(
ranked_groups,
current_model,
quantized_model_graph,
initial_metric_results.values_for_each_item,
current_approximate_values_for_each_item,
)
report.num_iterations = iteration
QuantizationAccuracyRestorer._print_report(report, self.max_num_iterations)
return current_model
def _calculate_number_ranker_workers(
self,
model_size: int,
preparation_time: float,
validation_time: float,
validation_dataset_size: int,
) -> int:
"""
Calculate the number of parallel ranker workers
:param model_size: Target model size.
:param preparation_time: The time it takes to prepare the model.
:param validation_time: The time it takes to validate the model.
:param validation_dataset_size: Validation dataset size.
:return: The number of parallel ranker workers
"""
if preparation_time < PREPARATION_MODEL_THRESHOLD:
return 1
# Calculate the number of parallel processes needed to override model preparation and
# metric calculation on the ranking subset
ranking_time = validation_time * self.ranking_subset_size / validation_dataset_size
n_workers = max(round((preparation_time / ranking_time + 1) * OVERHEAD_COEFFICIENT), 2)
# Apply limitation by number of CPU cores
n_cores = get_available_cpu_count(logical=True)
n_workers = max(min(n_workers, n_cores // 2), 1)
# Apply limitation by memory
ram = get_available_memory_amount()
n_copies = ram // (model_size * MEMORY_INCREASE_COEFFICIENT)
n_workers = max(min(n_workers, n_copies - 1), 1)
return n_workers
@staticmethod
def _collect_original_biases_and_weights(
initial_model_graph: NNCFGraph,
quantized_model_graph: NNCFGraph,
initial_model: TModel,
algo_backend: AccuracyControlAlgoBackend,
) -> None:
"""
Collects initial biases and weights and stores them inside the `node.attributes['original_bias']` and
`node.attributes['original_weight']` where `node` is a node from `quantized_model_graph`.
:param initial_model_graph: Graph for initial model.
:param quantized_model_graph: Graph for quantized model.
:param initial_model: Initial model.
:param algo_backend: The `AccuracyControlAlgoBackend` algo backend.
"""
for node in initial_model_graph.get_all_nodes():
if algo_backend.is_node_with_bias(node, initial_model_graph):
node_with_bias = quantized_model_graph.get_node_by_name(node.node_name)
node_with_bias.attributes["original_bias"] = algo_backend.get_bias_value(
node, initial_model_graph, initial_model
)
if algo_backend.is_node_with_weight(node):
node_with_weight = quantized_model_graph.get_node_by_name(node.node_name)
for port_id in algo_backend.get_weight_tensor_port_ids(node_with_weight):
weight = algo_backend.get_weight_value(node, initial_model, port_id)
node_with_weight.attributes[f"original_weight.{port_id}"] = weight
@staticmethod
def _print_report(report: QuantizationAccuracyRestorerReport, max_num_iterations: int) -> None:
"""
Shows report.
:param report: Report.
:param max_num_iterations: A maximal number of iterations.
"""
if report.removed_all or not report.reached_required_drop:
nncf_logger.info("The algorithm could not achieve the required accuracy drop.")
if report.num_iterations + 1 >= max_num_iterations:
nncf_logger.info("Maximum number of iteration was reached.")
if not report.removed_all:
nncf_logger.debug(f"Quantizers that were removed:\n{_create_message(report.removed_quantizers)}")
nncf_logger.info(
f"{len(report.reverted_operations)} out of {report.num_quantized_operations} "
"were reverted back to the floating-point precision:"
f"\n{_create_message(report.reverted_operations)}"
)
@staticmethod
def _print_completion_message(accuracy_drop: float, drop_type: DropType) -> None:
if accuracy_drop is None or accuracy_drop < 0:
reason = "metric of the quantized model is greater than the metric of the initial model"
else:
reason = f"achieved required accuracy drop {float(accuracy_drop)} ({drop_type})"
nncf_logger.info(f"Algorithm completed: {reason}")