From 2949a6e6c056fcd584f3a03b7ba9d5b4b6acc783 Mon Sep 17 00:00:00 2001 From: Martin Gaievski Date: Tue, 21 May 2024 11:45:57 -0700 Subject: [PATCH] Use lazy initialization for priority queue of hits and scores to improve latencies by 20% (#746) * Optimize PQ for hybrid scores Signed-off-by: Martin Gaievski (cherry picked from commit 940a7ea5850d7778b53a08ce806d5baf10141703) --- CHANGELOG.md | 1 + .../neuralsearch/query/HybridQueryScorer.java | 50 ++++++------------- .../search/HybridTopScoreDocCollector.java | 15 +++--- .../query/HybridQueryScorerTests.java | 6 ++- .../HybridTopScoreDocCollectorTests.java | 15 ------ 5 files changed, 27 insertions(+), 60 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 9097dd26c..f6c0aea38 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -17,6 +17,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), ### Enhancements - Pass empty doc collector instead of top docs collector to improve hybrid query latencies by 20% ([#731](https://github.com/opensearch-project/neural-search/pull/731)) - Optimize parameter parsing in text chunking processor ([#733](https://github.com/opensearch-project/neural-search/pull/733)) +- Use lazy initialization for priority queue of hits and scores to improve latencies by 20% ([#746](https://github.com/opensearch-project/neural-search/pull/746)) ### Bug Fixes ### Infrastructure ### Documentation diff --git a/src/main/java/org/opensearch/neuralsearch/query/HybridQueryScorer.java b/src/main/java/org/opensearch/neuralsearch/query/HybridQueryScorer.java index 5afd43917..23dbd0e1d 100644 --- a/src/main/java/org/opensearch/neuralsearch/query/HybridQueryScorer.java +++ b/src/main/java/org/opensearch/neuralsearch/query/HybridQueryScorer.java @@ -4,14 +4,7 @@ */ package org.opensearch.neuralsearch.query; -import java.io.IOException; -import java.util.ArrayList; -import java.util.Collection; -import java.util.Collections; -import java.util.List; -import java.util.Locale; -import java.util.Objects; - +import lombok.Getter; import lombok.extern.log4j.Log4j2; import org.apache.lucene.search.DisiPriorityQueue; import org.apache.lucene.search.DisiWrapper; @@ -21,11 +14,16 @@ import org.apache.lucene.search.Scorer; import org.apache.lucene.search.TwoPhaseIterator; import org.apache.lucene.search.Weight; - -import lombok.Getter; import org.apache.lucene.util.PriorityQueue; import org.opensearch.neuralsearch.search.HybridDisiWrapper; +import java.io.IOException; +import java.util.ArrayList; +import java.util.Collection; +import java.util.Collections; +import java.util.List; +import java.util.Objects; + /** * Class abstracts functionality of Scorer for hybrid query. When iterating over documents in increasing * order of doc id, this class fills up array of scores per sub-query for each doc id. Order in array of scores @@ -40,11 +38,10 @@ public final class HybridQueryScorer extends Scorer { private final DisiPriorityQueue subScorersPQ; - private final float[] subScores; - private final DocIdSetIterator approximation; private final HybridScoreBlockBoundaryPropagator disjunctionBlockPropagator; private final TwoPhase twoPhase; + private final int numSubqueries; public HybridQueryScorer(final Weight weight, final List subScorers) throws IOException { this(weight, subScorers, ScoreMode.TOP_SCORES); @@ -53,7 +50,7 @@ public HybridQueryScorer(final Weight weight, final List subScorers) thr HybridQueryScorer(final Weight weight, final List subScorers, final ScoreMode scoreMode) throws IOException { super(weight); this.subScorers = Collections.unmodifiableList(subScorers); - subScores = new float[subScorers.size()]; + this.numSubqueries = subScorers.size(); this.subScorersPQ = initializeSubScorersPQ(); boolean needsScores = scoreMode != ScoreMode.COMPLETE_NO_SCORES; @@ -100,13 +97,8 @@ public int advanceShallow(int target) throws IOException { */ @Override public float score() throws IOException { - return score(getSubMatches()); - } - - private float score(DisiWrapper topList) throws IOException { float totalScore = 0.0f; - for (DisiWrapper disiWrapper = topList; disiWrapper != null; disiWrapper = disiWrapper.next) { - // check if this doc has match in the subQuery. If not, add score as 0.0 and continue + for (DisiWrapper disiWrapper : subScorersPQ) { if (disiWrapper.scorer.docID() == DocIdSetIterator.NO_MORE_DOCS) { continue; } @@ -189,21 +181,8 @@ public int docID() { * @throws IOException */ public float[] hybridScores() throws IOException { - float[] scores = new float[subScores.length]; + float[] scores = new float[numSubqueries]; DisiWrapper topList = subScorersPQ.topList(); - if (topList instanceof HybridDisiWrapper == false) { - log.error( - String.format( - Locale.ROOT, - "Unexpected type of DISI wrapper, expected [%s] but found [%s]", - HybridDisiWrapper.class.getSimpleName(), - subScorersPQ.topList().getClass().getSimpleName() - ) - ); - throw new IllegalStateException( - "Unable to collect scores for one of the sub-queries, encountered an unexpected type of score iterator." - ); - } for (HybridDisiWrapper disiWrapper = (HybridDisiWrapper) topList; disiWrapper != null; disiWrapper = (HybridDisiWrapper) disiWrapper.next) { // check if this doc has match in the subQuery. If not, add score as 0.0 and continue @@ -219,9 +198,8 @@ public float[] hybridScores() throws IOException { private DisiPriorityQueue initializeSubScorersPQ() { Objects.requireNonNull(subScorers, "should not be null"); // we need to count this way in order to include all identical sub-queries - int numOfSubQueries = subScorers.size(); - DisiPriorityQueue subScorersPQ = new DisiPriorityQueue(numOfSubQueries); - for (int idx = 0; idx < subScorers.size(); idx++) { + DisiPriorityQueue subScorersPQ = new DisiPriorityQueue(numSubqueries); + for (int idx = 0; idx < numSubqueries; idx++) { Scorer scorer = subScorers.get(idx); if (scorer == null) { continue; diff --git a/src/main/java/org/opensearch/neuralsearch/search/HybridTopScoreDocCollector.java b/src/main/java/org/opensearch/neuralsearch/search/HybridTopScoreDocCollector.java index 4418841f4..a9068af4b 100644 --- a/src/main/java/org/opensearch/neuralsearch/search/HybridTopScoreDocCollector.java +++ b/src/main/java/org/opensearch/neuralsearch/search/HybridTopScoreDocCollector.java @@ -22,10 +22,9 @@ import org.apache.lucene.search.TopDocs; import org.apache.lucene.search.TotalHits; import org.apache.lucene.util.PriorityQueue; -import org.opensearch.neuralsearch.query.HybridQueryScorer; -import lombok.Getter; import lombok.extern.log4j.Log4j2; +import org.opensearch.neuralsearch.query.HybridQueryScorer; /** * Collects the TopDocs after executing hybrid query. Uses HybridQueryTopDocs as DTO to handle each sub query results @@ -38,7 +37,6 @@ public class HybridTopScoreDocCollector implements Collector { private TotalHits.Relation totalHitsRelation = TotalHits.Relation.EQUAL_TO; private int[] totalHits; private final int numOfHits; - @Getter private PriorityQueue[] compoundScores; public HybridTopScoreDocCollector(int numHits, HitsThresholdChecker hitsThresholdChecker) { @@ -96,12 +94,13 @@ public void collect(int doc) throws IOException { if (Objects.isNull(compoundQueryScorer)) { throw new IllegalArgumentException("scorers are null for all sub-queries in hybrid query"); } + float[] subScoresByQuery = compoundQueryScorer.hybridScores(); // iterate over results for each query if (compoundScores == null) { compoundScores = new PriorityQueue[subScoresByQuery.length]; for (int i = 0; i < subScoresByQuery.length; i++) { - compoundScores[i] = new HitQueue(numOfHits, true); + compoundScores[i] = new HitQueue(numOfHits, false); } totalHits = new int[subScoresByQuery.length]; } @@ -113,10 +112,10 @@ public void collect(int doc) throws IOException { } totalHits[i]++; PriorityQueue pq = compoundScores[i]; - ScoreDoc topDoc = pq.top(); - topDoc.doc = doc + docBase; - topDoc.score = score; - pq.updateTop(); + ScoreDoc currentDoc = new ScoreDoc(doc + docBase, score); + // this way we're inserting into heap and do nothing else unless we reach the capacity + // after that we pull out the lowest score element on each insert + pq.insertWithOverflow(currentDoc); } } }; diff --git a/src/test/java/org/opensearch/neuralsearch/query/HybridQueryScorerTests.java b/src/test/java/org/opensearch/neuralsearch/query/HybridQueryScorerTests.java index a0a4c8ca3..e7325055e 100644 --- a/src/test/java/org/opensearch/neuralsearch/query/HybridQueryScorerTests.java +++ b/src/test/java/org/opensearch/neuralsearch/query/HybridQueryScorerTests.java @@ -142,7 +142,11 @@ public void testWithRandomDocumentsAndCombinedScore_whenMultipleScorers_thenRetu int idx = Arrays.binarySearch(docs2, doc); expectedScore += scores2[idx]; } - assertEquals(expectedScore, hybridQueryScorer.score(), 0.001f); + float hybridScore = 0.0f; + for (float score : hybridQueryScorer.hybridScores()) { + hybridScore += score; + } + assertEquals(expectedScore, hybridScore, 0.001f); numOfActualDocs++; } diff --git a/src/test/java/org/opensearch/neuralsearch/search/HybridTopScoreDocCollectorTests.java b/src/test/java/org/opensearch/neuralsearch/search/HybridTopScoreDocCollectorTests.java index ad5a955c4..96d32f7d5 100644 --- a/src/test/java/org/opensearch/neuralsearch/search/HybridTopScoreDocCollectorTests.java +++ b/src/test/java/org/opensearch/neuralsearch/search/HybridTopScoreDocCollectorTests.java @@ -36,7 +36,6 @@ import org.apache.lucene.search.Weight; import org.apache.lucene.store.Directory; import org.apache.lucene.tests.analysis.MockAnalyzer; -import org.apache.lucene.util.PriorityQueue; import org.opensearch.index.mapper.TextFieldMapper; import org.opensearch.index.query.QueryBuilders; import org.opensearch.index.query.QueryShardContext; @@ -446,13 +445,6 @@ public void testCompoundScorer_whenHybridScorerIsChildScorer_thenSuccessful() { int nextDoc = hybridQueryScorer.iterator().nextDoc(); leafCollector.collect(nextDoc); - assertNotNull(hybridTopScoreDocCollector.getCompoundScores()); - PriorityQueue[] compoundScoresPQ = hybridTopScoreDocCollector.getCompoundScores(); - assertEquals(1, compoundScoresPQ.length); - PriorityQueue scoreDoc = compoundScoresPQ[0]; - assertNotNull(scoreDoc); - assertNotNull(scoreDoc.top()); - w.close(); reader.close(); directory.close(); @@ -497,13 +489,6 @@ public void testCompoundScorer_whenHybridScorerIsTopLevelScorer_thenSuccessful() int nextDoc = hybridQueryScorer.iterator().nextDoc(); leafCollector.collect(nextDoc); - assertNotNull(hybridTopScoreDocCollector.getCompoundScores()); - PriorityQueue[] compoundScoresPQ = hybridTopScoreDocCollector.getCompoundScores(); - assertEquals(1, compoundScoresPQ.length); - PriorityQueue scoreDoc = compoundScoresPQ[0]; - assertNotNull(scoreDoc); - assertNotNull(scoreDoc.top()); - w.close(); reader.close(); directory.close();