Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Backport from 2.11 to 2.x #1728

Merged
merged 2 commits into from
Dec 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,21 @@ default ModelTensorOutput executePredict(MLInput mlInput) {
if (tempTensorOutputs.size() > 0 && tempTensorOutputs.get(0).getMlModelTensors() != null) {
tensorCount = tempTensorOutputs.get(0).getMlModelTensors().size();
}
processedDocs += Math.max(tensorCount, 1);
// This is to support some model which takes N text docs and embedding size is less than N.
// We need to tell executor what's the step size for each model run.
Map<String, String> parameters = getConnector().getParameters();
if (parameters != null && parameters.containsKey("input_docs_processed_step_size")) {
int stepSize = Integer.parseInt(parameters.get("input_docs_processed_step_size"));
// We need to check the parameter on runtime as parameter can be passed into predict request
if (stepSize <= 0) {
throw new IllegalArgumentException(
"Invalid parameter: input_docs_processed_step_size. It must be positive integer."
);
}
processedDocs += stepSize;
} else {
processedDocs += Math.max(tensorCount, 1);
}
tensorOutputs.addAll(tempTensorOutputs);
}
} else {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

import java.io.IOException;
import java.util.Arrays;
import java.util.Map;

import org.apache.http.HttpEntity;
import org.apache.http.ProtocolVersion;
Expand Down Expand Up @@ -201,7 +202,7 @@ public void executePredict_TextDocsInput() throws IOException {
.postProcessFunction(MLPostProcessFunction.OPENAI_EMBEDDING)
.requestBody("{\"input\": ${parameters.input}}")
.build();
Connector connector = HttpConnector
HttpConnector connector = HttpConnector
.builder()
.name("test connector")
.version("1")
Expand Down Expand Up @@ -244,6 +245,7 @@ public void executePredict_TextDocsInput() throws IOException {
HttpEntity entity = new StringEntity(modelResponse);
when(response.getEntity()).thenReturn(entity);
when(executor.getHttpClient()).thenReturn(httpClient);
when(executor.getConnector()).thenReturn(connector);
MLInputDataset inputDataSet = TextDocsInputDataSet.builder().docs(Arrays.asList("test doc1", "test doc2")).build();
ModelTensorOutput modelTensorOutput = executor
.executePredict(MLInput.builder().algorithm(FunctionName.REMOTE).inputDataset(inputDataSet).build());
Expand All @@ -261,4 +263,133 @@ public void executePredict_TextDocsInput() throws IOException {
modelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().get(1).getData()
);
}

@Test
public void executePredict_TextDocsInput_LessEmbeddingThanInputDocs() throws IOException {
String preprocessResult1 = "{\"parameters\": { \"input\": \"test doc1\" } }";
String preprocessResult2 = "{\"parameters\": { \"input\": \"test doc2\" } }";
when(scriptService.compile(any(), any()))
.then(invocation -> new TestTemplateService.MockTemplateScript.Factory(preprocessResult1))
.then(invocation -> new TestTemplateService.MockTemplateScript.Factory(preprocessResult2));

ConnectorAction predictAction = ConnectorAction
.builder()
.actionType(ConnectorAction.ActionType.PREDICT)
.method("POST")
.url("http://test.com/mock")
.preProcessFunction(MLPreProcessFunction.TEXT_DOCS_TO_OPENAI_EMBEDDING_INPUT)
.postProcessFunction(MLPostProcessFunction.OPENAI_EMBEDDING)
.requestBody("{\"input\": ${parameters.input}}")
.build();
Map<String, String> parameters = ImmutableMap.of("input_docs_processed_step_size", "2");
HttpConnector connector = HttpConnector
.builder()
.name("test connector")
.version("1")
.protocol("http")
.parameters(parameters)
.actions(Arrays.asList(predictAction))
.build();
HttpJsonConnectorExecutor executor = spy(new HttpJsonConnectorExecutor(connector));
executor.setScriptService(scriptService);
when(httpClient.execute(any())).thenReturn(response);
// model takes 2 input docs, but only output 1 embedding
String modelResponse = "{\n"
+ " \"object\": \"list\",\n"
+ " \"data\": [\n"
+ " {\n"
+ " \"object\": \"embedding\",\n"
+ " \"index\": 0,\n"
+ " \"embedding\": [\n"
+ " -0.014555434,\n"
+ " -0.002135904,\n"
+ " 0.0035105038\n"
+ " ]\n"
+ " } ],\n"
+ " \"model\": \"text-embedding-ada-002-v2\",\n"
+ " \"usage\": {\n"
+ " \"prompt_tokens\": 5,\n"
+ " \"total_tokens\": 5\n"
+ " }\n"
+ "}";
StatusLine statusLine = new BasicStatusLine(new ProtocolVersion("HTTP", 1, 1), 200, "OK");
when(response.getStatusLine()).thenReturn(statusLine);
HttpEntity entity = new StringEntity(modelResponse);
when(response.getEntity()).thenReturn(entity);
when(executor.getHttpClient()).thenReturn(httpClient);
when(executor.getConnector()).thenReturn(connector);
MLInputDataset inputDataSet = TextDocsInputDataSet.builder().docs(Arrays.asList("test doc1", "test doc2")).build();
ModelTensorOutput modelTensorOutput = executor
.executePredict(MLInput.builder().algorithm(FunctionName.REMOTE).inputDataset(inputDataSet).build());
Assert.assertEquals(1, modelTensorOutput.getMlModelOutputs().size());
Assert.assertEquals(1, modelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().size());
Assert.assertEquals("sentence_embedding", modelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().get(0).getName());
Assert
.assertArrayEquals(
new Number[] { -0.014555434, -0.002135904, 0.0035105038 },
modelTensorOutput.getMlModelOutputs().get(0).getMlModelTensors().get(0).getData()
);
}

@Test
public void executePredict_TextDocsInput_LessEmbeddingThanInputDocs_InvalidStepSize() throws IOException {
exceptionRule.expect(IllegalArgumentException.class);
exceptionRule.expectMessage("Invalid parameter: input_docs_processed_step_size. It must be positive integer.");
String preprocessResult1 = "{\"parameters\": { \"input\": \"test doc1\" } }";
String preprocessResult2 = "{\"parameters\": { \"input\": \"test doc2\" } }";
when(scriptService.compile(any(), any()))
.then(invocation -> new TestTemplateService.MockTemplateScript.Factory(preprocessResult1))
.then(invocation -> new TestTemplateService.MockTemplateScript.Factory(preprocessResult2));

ConnectorAction predictAction = ConnectorAction
.builder()
.actionType(ConnectorAction.ActionType.PREDICT)
.method("POST")
.url("http://test.com/mock")
.preProcessFunction(MLPreProcessFunction.TEXT_DOCS_TO_OPENAI_EMBEDDING_INPUT)
.postProcessFunction(MLPostProcessFunction.OPENAI_EMBEDDING)
.requestBody("{\"input\": ${parameters.input}}")
.build();
// step size must be positive integer, here we set it as -1, should trigger IllegalArgumentException
Map<String, String> parameters = ImmutableMap.of("input_docs_processed_step_size", "-1");
HttpConnector connector = HttpConnector
.builder()
.name("test connector")
.version("1")
.protocol("http")
.parameters(parameters)
.actions(Arrays.asList(predictAction))
.build();
HttpJsonConnectorExecutor executor = spy(new HttpJsonConnectorExecutor(connector));
executor.setScriptService(scriptService);
when(httpClient.execute(any())).thenReturn(response);
// model takes 2 input docs, but only output 1 embedding
String modelResponse = "{\n"
+ " \"object\": \"list\",\n"
+ " \"data\": [\n"
+ " {\n"
+ " \"object\": \"embedding\",\n"
+ " \"index\": 0,\n"
+ " \"embedding\": [\n"
+ " -0.014555434,\n"
+ " -0.002135904,\n"
+ " 0.0035105038\n"
+ " ]\n"
+ " } ],\n"
+ " \"model\": \"text-embedding-ada-002-v2\",\n"
+ " \"usage\": {\n"
+ " \"prompt_tokens\": 5,\n"
+ " \"total_tokens\": 5\n"
+ " }\n"
+ "}";
StatusLine statusLine = new BasicStatusLine(new ProtocolVersion("HTTP", 1, 1), 200, "OK");
when(response.getStatusLine()).thenReturn(statusLine);
HttpEntity entity = new StringEntity(modelResponse);
when(response.getEntity()).thenReturn(entity);
when(executor.getHttpClient()).thenReturn(httpClient);
when(executor.getConnector()).thenReturn(connector);
MLInputDataset inputDataSet = TextDocsInputDataSet.builder().docs(Arrays.asList("test doc1", "test doc2")).build();
ModelTensorOutput modelTensorOutput = executor
.executePredict(MLInput.builder().algorithm(FunctionName.REMOTE).inputDataset(inputDataSet).build());
}
}
Loading