Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Indexing Support for Lucene Byte Sized Vector #937

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
## [Unreleased 2.x](https://github.com/opensearch-project/k-NN/compare/2.8...2.x)
### Features
* Added efficient filtering support for Faiss Engine ([#936](https://github.com/opensearch-project/k-NN/pull/936))
* Add Indexing Support for Lucene Byte Sized Vector ([#937](https://github.com/opensearch-project/k-NN/pull/937))
### Enhancements
### Bug Fixes
### Infrastructure
Expand Down
5 changes: 5 additions & 0 deletions src/main/java/org/opensearch/knn/common/KNNConstants.java
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@

package org.opensearch.knn.common;

import org.opensearch.knn.index.VectorDataType;

public class KNNConstants {
// shared across library constants
public static final String DIMENSION = "dimension";
Expand Down Expand Up @@ -50,6 +52,9 @@ public class KNNConstants {
public static final String MAX_VECTOR_COUNT_PARAMETER = "max_training_vector_count";
public static final String SEARCH_SIZE_PARAMETER = "search_size";

public static final String VECTOR_DATA_TYPE_FIELD = "data_type";
public static final VectorDataType DEFAULT_VECTOR_DATA_TYPE_FIELD = VectorDataType.FLOAT;

// Lucene specific constants
public static final String LUCENE_NAME = "lucene";

Expand Down
89 changes: 89 additions & 0 deletions src/main/java/org/opensearch/knn/index/VectorDataType.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/

package org.opensearch.knn.index;

import lombok.AllArgsConstructor;
import lombok.Getter;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.document.KnnByteVectorField;
import org.apache.lucene.document.KnnVectorField;
import org.apache.lucene.index.VectorSimilarityFunction;

import java.util.Arrays;
import java.util.Locale;
import java.util.Objects;
import java.util.stream.Collectors;

import static org.opensearch.knn.common.KNNConstants.VECTOR_DATA_TYPE_FIELD;

/**
* Enum contains data_type of vectors and right now only supported for lucene engine in k-NN plugin.
* We have two vector data_types, one is float (default) and the other one is byte.
*/
@AllArgsConstructor
naveentatikonda marked this conversation as resolved.
Show resolved Hide resolved
public enum VectorDataType {
BYTE("byte") {

@Override
public FieldType createKnnVectorFieldType(int dimension, VectorSimilarityFunction vectorSimilarityFunction) {
return KnnByteVectorField.createFieldType(dimension, vectorSimilarityFunction);
}
},
FLOAT("float") {

@Override
public FieldType createKnnVectorFieldType(int dimension, VectorSimilarityFunction vectorSimilarityFunction) {
return KnnVectorField.createFieldType(dimension, vectorSimilarityFunction);
}

};

public static final String SUPPORTED_VECTOR_DATA_TYPES = Arrays.stream(VectorDataType.values())
.map(VectorDataType::getValue)
.collect(Collectors.joining(","));
@Getter
private final String value;

/**
* Creates a KnnVectorFieldType based on the VectorDataType using the provided dimension and
* VectorSimilarityFunction.
*
* @param dimension Dimension of the vector
* @param vectorSimilarityFunction VectorSimilarityFunction for a given spaceType
* @return FieldType
*/
public abstract FieldType createKnnVectorFieldType(int dimension, VectorSimilarityFunction vectorSimilarityFunction);

/**
* Validates if given VectorDataType is in the list of supported data types.
naveentatikonda marked this conversation as resolved.
Show resolved Hide resolved
* @param vectorDataType VectorDataType
* @return the same VectorDataType if it is in the supported values
* throws Exception if an invalid value is provided.
*/
public static VectorDataType get(String vectorDataType) {
naveentatikonda marked this conversation as resolved.
Show resolved Hide resolved
Objects.requireNonNull(
vectorDataType,
String.format(
Locale.ROOT,
"[%s] should not be null. Supported types are [%s]",
VECTOR_DATA_TYPE_FIELD,
SUPPORTED_VECTOR_DATA_TYPES
)
);
try {
return VectorDataType.valueOf(vectorDataType.toUpperCase(Locale.ROOT));
} catch (Exception e) {
throw new IllegalArgumentException(
String.format(
Locale.ROOT,
"Invalid value provided for [%s] field. Supported values are [%s]",
VECTOR_DATA_TYPE_FIELD,
SUPPORTED_VECTOR_DATA_TYPES
)
);
}
}
}
15 changes: 15 additions & 0 deletions src/main/java/org/opensearch/knn/index/VectorField.java
Original file line number Diff line number Diff line change
Expand Up @@ -23,4 +23,19 @@ public VectorField(String name, float[] value, IndexableFieldType type) {
throw new RuntimeException(e);
}
}

/**
* @param name FieldType name
* @param value an array of byte vector values
* @param type FieldType to build DocValues
*/
public VectorField(String name, byte[] value, IndexableFieldType type) {
super(name, new BytesRef(), type);
try {
this.setBytesValue(value);
} catch (Exception e) {
throw new RuntimeException(e);
}

}
}
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
import org.opensearch.knn.common.KNNConstants;

import org.apache.lucene.document.FieldType;
import org.apache.lucene.document.StoredField;
import org.apache.lucene.index.DocValuesType;
import org.apache.lucene.index.IndexOptions;
import org.apache.lucene.search.DocValuesFieldExistsQuery;
Expand All @@ -35,6 +34,7 @@
import org.opensearch.knn.index.KNNMethodContext;
import org.opensearch.knn.index.KNNSettings;
import org.opensearch.knn.index.KNNVectorIndexFieldData;
import org.opensearch.knn.index.VectorDataType;
import org.opensearch.knn.index.VectorField;
import org.opensearch.knn.index.util.KNNEngine;
import org.opensearch.knn.indices.ModelDao;
Expand All @@ -49,7 +49,14 @@
import java.util.Optional;
import java.util.function.Supplier;

import static org.opensearch.knn.common.KNNConstants.DEFAULT_VECTOR_DATA_TYPE_FIELD;
import static org.opensearch.knn.common.KNNConstants.KNN_METHOD;
import static org.opensearch.knn.common.KNNConstants.VECTOR_DATA_TYPE_FIELD;
import static org.opensearch.knn.index.mapper.KNNVectorFieldMapperUtil.addStoredFieldForVectorField;
import static org.opensearch.knn.index.mapper.KNNVectorFieldMapperUtil.validateByteVectorValue;
import static org.opensearch.knn.index.mapper.KNNVectorFieldMapperUtil.validateFloatVectorValue;
import static org.opensearch.knn.index.mapper.KNNVectorFieldMapperUtil.validateVectorDataTypeWithEngine;
import static org.opensearch.knn.index.mapper.KNNVectorFieldMapperUtil.validateVectorDimension;

/**
* Field Mapper for KNN vector type.
Expand Down Expand Up @@ -96,6 +103,18 @@ public static class Builder extends ParametrizedFieldMapper.Builder {
return value;
}, m -> toType(m).dimension);

/**
* data_type which defines the datatype of the vector values. This is an optional parameter and
* this is right now only relevant for lucene engine. The default value is float.
*/
private final Parameter<VectorDataType> vectorDataType = new Parameter<>(
VECTOR_DATA_TYPE_FIELD,
false,
() -> DEFAULT_VECTOR_DATA_TYPE_FIELD,
(n, c, o) -> VectorDataType.get((String) o),
m -> toType(m).vectorDataType
);

/**
* modelId provides a way for a user to generate the underlying library indices from an already serialized
* model template index. If this parameter is set, it will take precedence. This parameter is only relevant for
Expand Down Expand Up @@ -168,7 +187,7 @@ public Builder(String name, String spaceType, String m, String efConstruction) {

@Override
protected List<Parameter<?>> getParameters() {
return Arrays.asList(stored, hasDocValues, dimension, meta, knnMethodContext, modelId);
return Arrays.asList(stored, hasDocValues, dimension, vectorDataType, meta, knnMethodContext, modelId);
}

protected Explicit<Boolean> ignoreMalformed(BuilderContext context) {
Expand Down Expand Up @@ -203,7 +222,8 @@ public KNNVectorFieldMapper build(BuilderContext context) {
buildFullName(context),
metaValue,
dimension.getValue(),
knnMethodContext
knnMethodContext,
vectorDataType.getValue()
);
if (knnMethodContext.getKnnEngine() == KNNEngine.LUCENE) {
log.debug(String.format("Use [LuceneFieldMapper] mapper for field [%s]", name));
Expand All @@ -216,6 +236,7 @@ public KNNVectorFieldMapper build(BuilderContext context) {
.ignoreMalformed(ignoreMalformed)
.stored(stored.get())
.hasDocValues(hasDocValues.get())
.vectorDataType(vectorDataType.getValue())
.knnMethodContext(knnMethodContext)
.build();
return new LuceneFieldMapper(createLuceneFieldMapperInput);
Expand Down Expand Up @@ -327,6 +348,10 @@ public Mapper.Builder<?> parse(String name, Map<String, Object> node, ParserCont
throw new IllegalArgumentException(String.format("Dimension value missing for vector: %s", name));
}

// Validates and throws exception if data_type field is set in the index mapping
// using any VectorDataType (other than float, which is default) with any engine (except lucene).
validateVectorDataTypeWithEngine(builder.knnMethodContext, builder.vectorDataType);

return builder;
}
}
Expand All @@ -336,20 +361,43 @@ public static class KNNVectorFieldType extends MappedFieldType {
int dimension;
String modelId;
KNNMethodContext knnMethodContext;
VectorDataType vectorDataType;

public KNNVectorFieldType(String name, Map<String, String> meta, int dimension) {
this(name, meta, dimension, null, null);
this(name, meta, dimension, null, null, DEFAULT_VECTOR_DATA_TYPE_FIELD);
}

public KNNVectorFieldType(String name, Map<String, String> meta, int dimension, KNNMethodContext knnMethodContext) {
this(name, meta, dimension, knnMethodContext, null);
this(name, meta, dimension, knnMethodContext, null, DEFAULT_VECTOR_DATA_TYPE_FIELD);
}

public KNNVectorFieldType(String name, Map<String, String> meta, int dimension, KNNMethodContext knnMethodContext, String modelId) {
this(name, meta, dimension, knnMethodContext, modelId, DEFAULT_VECTOR_DATA_TYPE_FIELD);
}

public KNNVectorFieldType(
String name,
Map<String, String> meta,
int dimension,
KNNMethodContext knnMethodContext,
VectorDataType vectorDataType
) {
this(name, meta, dimension, knnMethodContext, null, vectorDataType);
}

public KNNVectorFieldType(
String name,
Map<String, String> meta,
int dimension,
KNNMethodContext knnMethodContext,
String modelId,
VectorDataType vectorDataType
) {
super(name, false, false, true, TextSearchInfo.NONE, meta);
this.dimension = dimension;
this.modelId = modelId;
this.knnMethodContext = knnMethodContext;
this.vectorDataType = vectorDataType;
}

@Override
Expand Down Expand Up @@ -386,6 +434,7 @@ public IndexFieldData.Builder fielddataBuilder(String fullyQualifiedIndexName, S
protected boolean stored;
protected boolean hasDocValues;
protected Integer dimension;
protected VectorDataType vectorDataType;
protected ModelDao modelDao;

// These members map to parameters in the builder. They need to be declared in the abstract class due to the
Expand All @@ -408,6 +457,7 @@ public KNNVectorFieldMapper(
this.stored = stored;
this.hasDocValues = hasDocValues;
this.dimension = mappedFieldType.getDimension();
this.vectorDataType = mappedFieldType.getVectorDataType();
updateEngineStats();
}

Expand Down Expand Up @@ -439,9 +489,7 @@ protected void parseCreateField(ParseContext context, int dimension) throws IOEx
VectorField point = new VectorField(name(), array, fieldType);

context.doc().add(point);
if (fieldType.stored()) {
context.doc().add(new StoredField(name(), point.toString()));
}
addStoredFieldForVectorField(context, fieldType, name(), point.toString());
context.path().remove();
}

Expand All @@ -459,50 +507,65 @@ void validateIfKNNPluginEnabled() {
}
}

Optional<float[]> getFloatsFromContext(ParseContext context, int dimension) throws IOException {
// Returns an optional array of byte values where each value in the vector is parsed as a float and validated
// if it is a finite number without any decimals and within the byte range of [-128 to 127].
Optional<byte[]> getBytesFromContext(ParseContext context, int dimension) throws IOException {
context.path().add(simpleName());

ArrayList<Float> vector = new ArrayList<>();
ArrayList<Byte> vector = new ArrayList<>();
XContentParser.Token token = context.parser().currentToken();
float value;

if (token == XContentParser.Token.START_ARRAY) {
token = context.parser().nextToken();
while (token != XContentParser.Token.END_ARRAY) {
value = context.parser().floatValue();

if (Float.isNaN(value)) {
throw new IllegalArgumentException("KNN vector values cannot be NaN");
}

if (Float.isInfinite(value)) {
throw new IllegalArgumentException("KNN vector values cannot be infinity");
}

vector.add(value);
validateByteVectorValue(value);
vector.add((byte) value);
token = context.parser().nextToken();
}
} else if (token == XContentParser.Token.VALUE_NUMBER) {
value = context.parser().floatValue();
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why not read intValue instead of floatValue?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For bytes user is expected not to provide decimal values. If we try to parse it as intValue then if user provides any decimal values then it will be trimmed and we can't validate that scenario.

validateByteVectorValue(value);
vector.add((byte) value);
context.parser().nextToken();
} else if (token == XContentParser.Token.VALUE_NULL) {
context.path().remove();
return Optional.empty();
}
validateVectorDimension(dimension, vector.size());
byte[] array = new byte[vector.size()];
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we use byte[] from the start instead of converting from ArrayList to [] later?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Initially, we don't know what will be the size of the vector provided by user. So, we are using an ArrayList. After parsing everything then we are validating it's length against the dimension value.

int i = 0;
for (Byte f : vector) {
array[i++] = f;
}
return Optional.of(array);
}

if (Float.isNaN(value)) {
throw new IllegalArgumentException("KNN vector values cannot be NaN");
}
Optional<float[]> getFloatsFromContext(ParseContext context, int dimension) throws IOException {
context.path().add(simpleName());

if (Float.isInfinite(value)) {
throw new IllegalArgumentException("KNN vector values cannot be infinity");
ArrayList<Float> vector = new ArrayList<>();
XContentParser.Token token = context.parser().currentToken();
float value;
if (token == XContentParser.Token.START_ARRAY) {
token = context.parser().nextToken();
while (token != XContentParser.Token.END_ARRAY) {
value = context.parser().floatValue();
validateFloatVectorValue(value);
vector.add(value);
token = context.parser().nextToken();
}

} else if (token == XContentParser.Token.VALUE_NUMBER) {
value = context.parser().floatValue();
validateFloatVectorValue(value);
vector.add(value);
context.parser().nextToken();
} else if (token == XContentParser.Token.VALUE_NULL) {
context.path().remove();
return Optional.empty();
}

if (dimension != vector.size()) {
String errorMessage = String.format("Vector dimension mismatch. Expected: %d, Given: %d", dimension, vector.size());
throw new IllegalArgumentException(errorMessage);
}
validateVectorDimension(dimension, vector.size());

float[] array = new float[vector.size()];
int i = 0;
Expand Down
Loading