Skip to content

Latest commit

 

History

History
790 lines (756 loc) · 25.6 KB

File metadata and controls

790 lines (756 loc) · 25.6 KB
layout title nav_order grand_parent parent
default
Anatomy of a workload
15
User guide
Understanding workloads

Anatomy of a workload

All workloads contain the following files and directories:

  • workload.json: Contains all of the workload settings.
  • index.json: Contains the document mappings and parameters as well as index settings.
  • files.txt: Contains the data corpora file names.
  • _scenarios: Most workloads contain only one default scenario, which is configured in default.json.
  • _operations: Contains all of the operations used in scenarios.
  • workload.py: Adds more dynamic functionality to the test.

workload.json

The following example workload shows all of the essential elements needed to create a workload.json file. You can run this workload in your own benchmark configuration to understand how all of the elements work together:

{
  "description": "Tutorial benchmark for OpenSearch Benchmark",
  "indices": [
    {
      "name": "movies",
      "body": "index.json"
    }
  ],
  "corpora": [
    {
      "name": "movies",
      "documents": [
        {
          "source-file": "movies-documents.json",
          "document-count": 11658903, # Fetch document count from command line
          "uncompressed-bytes": 1544799789 # Fetch uncompressed bytes from command line
        }
      ]
    }
  ],
  "schedule": [
    {
      "operation": {
        "operation-type": "create-index"
      }
    },
    {
      "operation": {
        "operation-type": "cluster-health",
        "request-params": {
          "wait_for_status": "green"
        },
        "retry-until-success": true
      }
    },
    {
      "operation": {
        "operation-type": "bulk",
        "bulk-size": 5000
      },
      "warmup-time-period": 120,
      "clients": 8
    },
    {
      "operation": {
        "name": "query-match-all",
        "operation-type": "search",
        "body": {
          "query": {
            "match_all": {}
          }
        }
      },
      "iterations": 1000,
      "target-throughput": 100
    }
  ]
}

A workload usually includes the following elements:

  • indices: Defines the relevant indexes and index templates used for the workload.
  • corpora: Defines all document corpora used for the workload.
  • schedule: Defines operations and the order in which the operations run inline. Alternatively, you can use operations to group operations and the scenarios parameter to specify the order of operations.
  • operations: Optional. Describes which operations are available for the workload and how they are parameterized.

Indices

To create an index, specify its name. To add definitions to your index, use the body option and point it to the JSON file containing the index definitions. For more information, see Indices.

Corpora

The corpora element requires the name of the index containing the document corpus, for example, movies, and a list of parameters that define the document corpora. This list includes the following parameters:

  • source-file: The file name that contains the workload's corresponding documents. When using OpenSearch Benchmark locally, documents are contained in a JSON file. When providing a base_url, use a compressed file format: .zip, .bz2, .zst, .gz, .tar, .tar.gz, .tgz, or .tar.bz2. The compressed file must include one JSON file containing the name.
  • document-count: The number of documents in the source-file, which determines which client indexes correlate to which parts of the document corpus. Each N client is assigned an Nth of the document corpus to ingest into the test cluster. When using a source that contains a document with a parent-child relationship, specify the number of parent documents.
  • uncompressed-bytes: The size, in bytes, of the source file after decompression, indicating how much disk space the decompressed source file needs.
  • compressed-bytes: The size, in bytes, of the source file before decompression. This can help you assess the amount of time needed for the cluster to ingest documents.

Operations

The operations element lists the OpenSearch API operations performed by the workload. For example, you can list an operation named create-index that creates an index in the benchmark cluster to which OpenSearch Benchmark can write documents. Operations are usually listed inside of the schedule element.

Schedule

The schedule element contains a list of operations that are run in a specified order, as shown in the following JSON example:

  "schedule": [
    {
      "operation": {
        "operation-type": "create-index"
      }
    },
    {
      "operation": {
        "operation-type": "cluster-health",
        "request-params": {
          "wait_for_status": "green"
        },
        "retry-until-success": true
      }
    },
    {
      "operation": {
        "operation-type": "bulk",
        "bulk-size": 5000
      },
      "warmup-time-period": 120,
      "clients": 8
    },
    {
      "operation": {
        "name": "query-match-all",
        "operation-type": "search",
        "body": {
          "query": {
            "match_all": {}
          }
        }
      },
      "iterations": 1000,
      "target-throughput": 100
    }
  ]
}

According to this schedule, the actions will run in the following order:

  1. The create-index operation creates an index. The index remains empty until the bulk operation adds documents with benchmarked data.
  2. The cluster-health operation assesses the cluster's health before running the workload. In the JSON example, the workload waits until the cluster's health status is green.
    • The bulk operation runs the bulk API to index 5000 documents simultaneously.
    • Before benchmarking, the workload waits until the specified warmup-time-period passes. In the JSON example, the warmup period is 120 seconds.
  3. The clients field defines the number of clients, in this example, eight, that will run the bulk indexing operation concurrently.
  4. The search operation runs a match_all query to match all documents after they have been indexed by the bulk API using the specified clients.
    • The iterations field defines the number of times each client runs the search operation. The benchmark report automatically adjusts the percentile numbers based on this number. To generate a precise percentile, the benchmark needs to run at least 1,000 iterations.
    • The target-throughput field defines the number of requests per second performed by each client. This setting can help reduce benchmark latency. For example, a target-throughput of 100 requests divided by 8 clients means that each client will issue 12 requests per second. For more information about how target throughput is defined in OpenSearch Benchmark, see Target throughput.

index.json

The index.json file defines the data mappings, indexing parameters, and index settings for workload documents during create-index operations.

When OpenSearch Benchmark creates an index for the workload, it uses the index settings and mappings template in the index.json file. Mappings in the index.json file are based on the mappings of a single document from the workload's corpus, which is stored in the files.txt file. The following is an example of the index.json file for the nyc_taxis workload. You can customize the fields, such as number_of_shards, number_of_replicas, query_cache_enabled, and requests_cache_enabled.

{
  "settings": {
    "index.number_of_shards": {% raw %}{{number_of_shards | default(1)}}{% endraw %},
    "index.number_of_replicas": {% raw %}{{number_of_replicas | default(0)}}{% endraw %},
    "index.queries.cache.enabled": {% raw %}{{query_cache_enabled | default(false) | tojson}}{% endraw %},
    "index.requests.cache.enable": {% raw %}{{requests_cache_enabled | default(false) | tojson}}{% endraw %}
  },
  "mappings": {
    "_source": {
      "enabled": {% raw %}{{ source_enabled | default(true) | tojson }}{% endraw %}
    },
    "properties": {
      "surcharge": {
        "scaling_factor": 100,
        "type": "scaled_float"
      },
      "dropoff_datetime": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss"
      },
      "trip_type": {
        "type": "keyword"
      },
      "mta_tax": {
        "scaling_factor": 100,
        "type": "scaled_float"
      },
      "rate_code_id": {
        "type": "keyword"
      },
      "passenger_count": {
        "type": "integer"
      },
      "pickup_datetime": {
        "type": "date",
        "format": "yyyy-MM-dd HH:mm:ss"
      },
      "tolls_amount": {
        "scaling_factor": 100,
        "type": "scaled_float"
      },
      "tip_amount": {
        "type": "half_float"
      },
      "payment_type": {
        "type": "keyword"
      },
      "extra": {
        "scaling_factor": 100,
        "type": "scaled_float"
      },
      "vendor_id": {
        "type": "keyword"
      },
      "store_and_fwd_flag": {
        "type": "keyword"
      },
      "improvement_surcharge": {
        "scaling_factor": 100,
        "type": "scaled_float"
      },
      "fare_amount": {
        "scaling_factor": 100,
        "type": "scaled_float"
      },
      "ehail_fee": {
        "scaling_factor": 100,
        "type": "scaled_float"
      },
      "cab_color": {
        "type": "keyword"
      },
      "dropoff_location": {
        "type": "geo_point"
      },
      "vendor_name": {
        "type": "text"
      },
      "total_amount": {
        "scaling_factor": 100,
        "type": "scaled_float"
      },
      "trip_distance": {% raw %}{%- if trip_distance_mapping is defined %} {{ trip_distance_mapping | tojson }} {%- else %}{% endraw %} {
        "scaling_factor": 100,
        "type": "scaled_float"
      }{% raw %}{%- endif %}{% endraw %},
      "pickup_location": {
        "type": "geo_point"
      }
    },
    "dynamic": "strict"
  }
}

files.txt

The files.txt file lists the files that store the workload data, which are typically stored in a zipped JSON file.

_operations and _scenarios

To make the workload more human-readable, _operations and _scenarios are separated into two directories.

The _operations directory contains a default.json file that lists all of the supported operations that the scenario can use. Some workloads, such as nyc_taxis, contain an additional .json file that lists feature-specific operations, such as snapshot operations. The following JSON example shows a list of operations from the nyc_taxis workload:

    {
      "name": "index",
      "operation-type": "bulk",
      "bulk-size": {% raw %}{{bulk_size | default(10000)}}{% endraw %},
      "ingest-percentage": {% raw %}{{ingest_percentage | default(100)}}{% endraw %}
    },
    {
      "name": "update",
      "operation-type": "bulk",
      "bulk-size": {% raw %}{{bulk_size | default(10000)}},
      "ingest-percentage": {{ingest_percentage | default(100)}},
      "conflicts": "{{conflicts | default('random')}}",
      "on-conflict": "{{on_conflict | default('update')}}",
      "conflict-probability": {{conflict_probability | default(25)}},
      "recency": {{recency | default(0)}}{% endraw %}
    },
    {
      "name": "wait-until-merges-finish",
      "operation-type": "index-stats",
      "index": "_all",
      "condition": {
        "path": "_all.total.merges.current",
        "expected-value": 0
      },
      "retry-until-success": true,
      "include-in-reporting": false
    },
    {
      "name": "default",
      "operation-type": "search",
      "body": {
        "query": {
          "match_all": {}
        }
      }
    },
    {
      "name": "range",
      "operation-type": "search",
      "body": {
        "query": {
          "range": {
            "total_amount": {
              "gte": 5,
              "lt": 15
            }
          }
        }
      }
    },
    {
      "name": "distance_amount_agg",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "bool": {
            "filter": {
              "range": {
                "trip_distance": {
                  "lt": 50,
                  "gte": 0
                }
              }
            }
          }
        },
        "aggs": {
          "distance_histo": {
            "histogram": {
              "field": "trip_distance",
              "interval": 1
            },
            "aggs": {
              "total_amount_stats": {
                "stats": {
                  "field": "total_amount"
                }
              }
            }
          }
        }
      }
    },
    {
      "name": "autohisto_agg",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "01/01/2015",
              "lte": "21/01/2015",
              "format": "dd/MM/yyyy"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "auto_date_histogram": {
              "field": "dropoff_datetime",
              "buckets": 20
            }
          }
        }
      }
    },
    {
      "name": "date_histogram_agg",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
              "dropoff_datetime": {
              "gte": "01/01/2015",
              "lte": "21/01/2015",
              "format": "dd/MM/yyyy"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "date_histogram": {
              "field": "dropoff_datetime",
              "calendar_interval": "day"
            }
          }
        }
      }
    },
    {
      "name": "date_histogram_calendar_interval",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "2015-01-01 00:00:00",
              "lt": "2016-01-01 00:00:00"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "date_histogram": {
              "field": "dropoff_datetime",
              "calendar_interval": "month"
            }
          }
        }
      }
    },
    {
      "name": "date_histogram_calendar_interval_with_tz",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "2015-01-01 00:00:00",
              "lt": "2016-01-01 00:00:00"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "date_histogram": {
              "field": "dropoff_datetime",
              "calendar_interval": "month",
              "time_zone": "America/New_York"
            }
          }
        }
      }
    },
    {
      "name": "date_histogram_fixed_interval",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "2015-01-01 00:00:00",
              "lt": "2016-01-01 00:00:00"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "date_histogram": {
              "field": "dropoff_datetime",
              "fixed_interval": "60d"
            }
          }
        }
      }
    },
    {
      "name": "date_histogram_fixed_interval_with_tz",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "2015-01-01 00:00:00",
              "lt": "2016-01-01 00:00:00"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "date_histogram": {
              "field": "dropoff_datetime",
              "fixed_interval": "60d",
              "time_zone": "America/New_York"
            }
          }
        }
      }
    },
    {
      "name": "date_histogram_fixed_interval_with_metrics",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "2015-01-01 00:00:00",
              "lt": "2016-01-01 00:00:00"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "date_histogram": {
              "field": "dropoff_datetime",
              "fixed_interval": "60d"
            },
            "aggs": {
              "total_amount": { "stats": { "field": "total_amount" } },
              "tip_amount": { "stats": { "field": "tip_amount" } },
              "trip_distance": { "stats": { "field": "trip_distance" } }
            }
          }
        }
      }
    },
    {
      "name": "auto_date_histogram",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "2015-01-01 00:00:00",
              "lt": "2016-01-01 00:00:00"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "auto_date_histogram": {
              "field": "dropoff_datetime",
              "buckets": "12"
            }
          }
        }
      }
    },
    {
      "name": "auto_date_histogram_with_tz",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "2015-01-01 00:00:00",
              "lt": "2016-01-01 00:00:00"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "auto_date_histogram": {
              "field": "dropoff_datetime",
              "buckets": "13",
              "time_zone": "America/New_York"
            }
          }
        }
      }
    },
    {
      "name": "auto_date_histogram_with_metrics",
      "operation-type": "search",
      "body": {
        "size": 0,
        "query": {
          "range": {
            "dropoff_datetime": {
              "gte": "2015-01-01 00:00:00",
              "lt": "2016-01-01 00:00:00"
            }
          }
        },
        "aggs": {
          "dropoffs_over_time": {
            "auto_date_histogram": {
              "field": "dropoff_datetime",
              "buckets": "12"
            },
            "aggs": {
              "total_amount": { "stats": { "field": "total_amount" } },
              "tip_amount": { "stats": { "field": "tip_amount" } },
              "trip_distance": { "stats": { "field": "trip_distance" } }
            }
          }
        }
      }
    },
    {
      "name": "desc_sort_tip_amount",
      "operation-type": "search",
      "index": "nyc_taxis",
      "body": {
        "query": {
          "match_all": {}
        },
        "sort" : [
          {"tip_amount" : "desc"}
        ]
      }
    },
    {
      "name": "asc_sort_tip_amount",
      "operation-type": "search",
      "index": "nyc_taxis",
      "body": {
        "query": {
          "match_all": {}
        },
        "sort" : [
          {"tip_amount" : "asc"}
        ]
      }
    }

The _scenarios directory contains a default.json file that sets the order of operations performed by the workload. Similar to the _operations directory, the _scenarios directory can also contain feature-specific scenarios, such as searchable_snapshots.json for nyc_taxis. The following examples show the searchable snapshots scenarios for nyc_taxis:

 {
      "name": "searchable-snapshot",
      "description": "Measuring performance for Searchable Snapshot feature. Based on the default scenario 'append-no-conflicts'.",
      "schedule": [
        {
          "operation": "delete-index"
        },
        {
          "operation": {
            "operation-type": "create-index",
            "settings": {% raw %}{%- if index_settings is defined %} {{ index_settings | tojson }} {%- else %}{
              "index.codec": "best_compression",
              "index.refresh_interval": "30s",
              "index.translog.flush_threshold_size": "4g"
            }{%- endif %}{% endraw %}
          }
        },
        {
          "name": "check-cluster-health",
          "operation": {
            "operation-type": "cluster-health",
            "index": "nyc_taxis",
            "request-params": {
              "wait_for_status": {% raw %}"{{ cluster_health | default('green') }}"{% endraw %},
              "wait_for_no_relocating_shards": "true"
            },
            "retry-until-success": true
          }
        },
        {
          "operation": "index",
          "warmup-time-period": 240,
          "clients": {% raw %}{{ bulk_indexing_clients | default(8) }},
          "ignore-response-error-level": "{{ error_level | default('non-fatal') }}"{% endraw %}
        },
        {
          "name": "refresh-after-index",
          "operation": "refresh"
        },
        {
          "operation": {
            "operation-type": "force-merge",
            "request-timeout": 7200
            {% raw %}{%- if force_merge_max_num_segments is defined %}{% endraw %},
            "max-num-segments": {% raw %}{{ force_merge_max_num_segments | tojson }}{% endraw %}
            {% raw %}{%- endif %}{% endraw %}
          }
        },
        {
          "name": "refresh-after-force-merge",
          "operation": "refresh"
        },
        {
          "operation": "wait-until-merges-finish"
        },
        {
          "operation": "create-snapshot-repository"
        },
        {
          "operation": "delete-snapshot"
        },
        {
          "operation": "create-snapshot"
        },
        {
          "operation": "wait-for-snapshot-creation"
        },
        {
          "operation": {
            "name": "delete-local-index",
            "operation-type": "delete-index"
          }
        },
        {
          "operation": "restore-snapshot"
        },
        {
          "operation": "default",
          "warmup-iterations": 50,
          "iterations": 100
          {% raw %}{%- if not target_throughput %}{% endraw %}
          ,"target-throughput": 3
          {% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
          {% raw %}{%- else %}{% endraw %}
          ,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
          {% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
          ,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
        },
        {
          "operation": "range",
          "warmup-iterations": 50,
          "iterations": 100
          {% raw %}{%- if not target_throughput %}{% endraw %}
          ,"target-throughput": 0.7
          {% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
          {% raw %}{%- else %}{% endraw %}
          ,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
          {% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
          ,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
        },
        {
          "operation": "distance_amount_agg",
          "warmup-iterations": 50,
          "iterations": 50
          {% raw %}{%- if not target_throughput %}{% endraw %}
          ,"target-throughput": 2
          {% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
          {% raw %}{%- else %}{% endraw %}
          ,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
          {% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
          ,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
        },
        {
          "operation": "autohisto_agg",
          "warmup-iterations": 50,
          "iterations": 100
          {% raw %}{%- if not target_throughput %}{% endraw %}
          ,"target-throughput": 1.5
          {% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
          {% raw %}{%- else %}{% endraw %}
          ,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
          {% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
          ,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
        },
        {
          "operation": "date_histogram_agg",
          "warmup-iterations": 50,
          "iterations": 100
          {% raw %}{%- if not target_throughput %}{% endraw %}
          ,"target-throughput": 1.5
          {% raw %}{%- elif target_throughput is string and target_throughput.lower() == 'none' %}{% endraw %}
          {% raw %}{%- else %}{% endraw %}
          ,"target-throughput": {% raw %}{{ target_throughput | tojson }}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
          {% raw %}{%-if search_clients is defined and search_clients %}{% endraw %}
          ,"clients": {% raw %}{{ search_clients | tojson}}{% endraw %}
          {% raw %}{%- endif %}{% endraw %}
        }
      ]
    }

Next steps

Now that you have familiarized yourself with the anatomy of a workload, see the criteria for Choosing a workload.