-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
ReplicaShardAllocator.java
551 lines (508 loc) · 26.7 KB
/
ReplicaShardAllocator.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*
* SPDX-License-Identifier: Apache-2.0
*
* The OpenSearch Contributors require contributions made to
* this file be licensed under the Apache-2.0 license or a
* compatible open source license.
*/
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Modifications Copyright OpenSearch Contributors. See
* GitHub history for details.
*/
package org.opensearch.gateway;
import org.apache.logging.log4j.Logger;
import org.opensearch.cluster.metadata.IndexMetadata;
import org.opensearch.cluster.metadata.Metadata;
import org.opensearch.cluster.node.DiscoveryNode;
import org.opensearch.cluster.routing.RoutingNode;
import org.opensearch.cluster.routing.RoutingNodes;
import org.opensearch.cluster.routing.ShardRouting;
import org.opensearch.cluster.routing.UnassignedInfo;
import org.opensearch.cluster.routing.UnassignedInfo.AllocationStatus;
import org.opensearch.cluster.routing.allocation.AllocateUnassignedDecision;
import org.opensearch.cluster.routing.allocation.NodeAllocationResult;
import org.opensearch.cluster.routing.allocation.NodeAllocationResult.ShardStoreInfo;
import org.opensearch.cluster.routing.allocation.RoutingAllocation;
import org.opensearch.cluster.routing.allocation.decider.Decision;
import org.opensearch.common.Nullable;
import org.opensearch.common.collect.Tuple;
import org.opensearch.common.unit.TimeValue;
import org.opensearch.core.common.unit.ByteSizeValue;
import org.opensearch.index.store.StoreFileMetadata;
import org.opensearch.indices.store.TransportNodesListShardStoreMetadata.NodeStoreFilesMetadata;
import org.opensearch.indices.store.TransportNodesListShardStoreMetadataHelper.StoreFilesMetadata;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import static org.opensearch.cluster.routing.UnassignedInfo.INDEX_DELAYED_NODE_LEFT_TIMEOUT_SETTING;
/**
* Allocates replica shards
*
* @opensearch.internal
*/
public abstract class ReplicaShardAllocator extends BaseGatewayShardAllocator {
/**
* Process existing recoveries of replicas and see if we need to cancel them if we find a better
* match. Today, a better match is one that can perform a no-op recovery while the previous recovery
* has to copy segment files.
*/
public void processExistingRecoveries(RoutingAllocation allocation) {
Metadata metadata = allocation.metadata();
RoutingNodes routingNodes = allocation.routingNodes();
List<Runnable> shardCancellationActions = new ArrayList<>();
for (RoutingNode routingNode : routingNodes) {
for (ShardRouting shard : routingNode) {
if (shard.primary()) {
continue;
}
if (shard.initializing() == false) {
continue;
}
if (shard.relocatingNodeId() != null) {
continue;
}
// if we are allocating a replica because of index creation, no need to go and find a copy, there isn't one...
if (shard.unassignedInfo() != null && shard.unassignedInfo().getReason() == UnassignedInfo.Reason.INDEX_CREATED) {
continue;
}
AsyncShardFetch.FetchResult<NodeStoreFilesMetadata> shardStores = fetchData(shard, allocation);
if (shardStores.hasData() == false) {
logger.trace("{}: fetching new stores for initializing shard", shard);
continue; // still fetching
}
ShardRouting primaryShard = allocation.routingNodes().activePrimary(shard.shardId());
assert primaryShard != null : "the replica shard can be allocated on at least one node, so there must be an active primary";
assert primaryShard.currentNodeId() != null;
final DiscoveryNode primaryNode = allocation.nodes().get(primaryShard.currentNodeId());
final StoreFilesMetadata primaryStore = findStore(primaryNode, shardStores);
if (primaryStore == null) {
// if we can't find the primary data, it is probably because the primary shard is corrupted (and listing failed)
// just let the recovery find it out, no need to do anything about it for the initializing shard
logger.trace("{}: no primary shard store found or allocated, letting actual allocation figure it out", shard);
continue;
}
MatchingNodes matchingNodes = findMatchingNodes(shard, allocation, true, primaryNode, primaryStore, shardStores, false);
if (matchingNodes.getNodeWithHighestMatch() != null) {
DiscoveryNode currentNode = allocation.nodes().get(shard.currentNodeId());
DiscoveryNode nodeWithHighestMatch = matchingNodes.getNodeWithHighestMatch();
// current node will not be in matchingNodes as it is filtered away by SameShardAllocationDecider
if (currentNode.equals(nodeWithHighestMatch) == false
&& matchingNodes.canPerformNoopRecovery(nodeWithHighestMatch)
&& canPerformOperationBasedRecovery(primaryStore, shardStores, currentNode) == false) {
// we found a better match that can perform noop recovery, cancel the existing allocation.
logger.debug(
"cancelling allocation of replica on [{}], can perform a noop recovery on node [{}]",
currentNode,
nodeWithHighestMatch
);
final Set<String> failedNodeIds = shard.unassignedInfo() == null
? Collections.emptySet()
: shard.unassignedInfo().getFailedNodeIds();
UnassignedInfo unassignedInfo = new UnassignedInfo(
UnassignedInfo.Reason.REALLOCATED_REPLICA,
"existing allocation of replica to ["
+ currentNode
+ "] cancelled, can perform a noop recovery on ["
+ nodeWithHighestMatch
+ "]",
null,
0,
allocation.getCurrentNanoTime(),
System.currentTimeMillis(),
false,
UnassignedInfo.AllocationStatus.NO_ATTEMPT,
failedNodeIds
);
// don't cancel shard in the loop as it will cause a ConcurrentModificationException
shardCancellationActions.add(
() -> routingNodes.failShard(
logger,
shard,
unassignedInfo,
metadata.getIndexSafe(shard.index()),
allocation.changes()
)
);
}
}
}
}
for (Runnable action : shardCancellationActions) {
action.run();
}
}
/**
* Is the allocator responsible for allocating the given {@link ShardRouting}?
*/
private static boolean isResponsibleFor(final ShardRouting shard) {
return shard.primary() == false // must be a replica
&& shard.unassigned() // must be unassigned
// if we are allocating a replica because of index creation, no need to go and find a copy, there isn't one...
&& shard.unassignedInfo().getReason() != UnassignedInfo.Reason.INDEX_CREATED;
}
@Override
public AllocateUnassignedDecision makeAllocationDecision(
final ShardRouting unassignedShard,
final RoutingAllocation allocation,
final Logger logger
) {
if (isResponsibleFor(unassignedShard) == false) {
// this allocator is not responsible for deciding on this shard
return AllocateUnassignedDecision.NOT_TAKEN;
}
final RoutingNodes routingNodes = allocation.routingNodes();
final boolean explain = allocation.debugDecision();
// pre-check if it can be allocated to any node that currently exists, so we won't list the store for it for nothing
Tuple<Decision, Map<String, NodeAllocationResult>> result = canBeAllocatedToAtLeastOneNode(unassignedShard, allocation);
Decision allocateDecision = result.v1();
if (allocateDecision.type() != Decision.Type.YES && (explain == false || hasInitiatedFetching(unassignedShard) == false)) {
// only return early if we are not in explain mode, or we are in explain mode but we have not
// yet attempted to fetch any shard data
logger.trace("{}: ignoring allocation, can't be allocated on any node", unassignedShard);
return AllocateUnassignedDecision.no(
UnassignedInfo.AllocationStatus.fromDecision(allocateDecision.type()),
result.v2() != null ? new ArrayList<>(result.v2().values()) : null
);
}
AsyncShardFetch.FetchResult<NodeStoreFilesMetadata> shardStores = fetchData(unassignedShard, allocation);
if (shardStores.hasData() == false) {
logger.trace("{}: ignoring allocation, still fetching shard stores", unassignedShard);
allocation.setHasPendingAsyncFetch();
List<NodeAllocationResult> nodeDecisions = null;
if (explain) {
nodeDecisions = buildDecisionsForAllNodes(unassignedShard, allocation);
}
return AllocateUnassignedDecision.no(AllocationStatus.FETCHING_SHARD_DATA, nodeDecisions);
}
ShardRouting primaryShard = routingNodes.activePrimary(unassignedShard.shardId());
if (primaryShard == null) {
assert explain : "primary should only be null here if we are in explain mode, so we didn't "
+ "exit early when canBeAllocatedToAtLeastOneNode didn't return a YES decision";
return AllocateUnassignedDecision.no(
UnassignedInfo.AllocationStatus.fromDecision(allocateDecision.type()),
new ArrayList<>(result.v2().values())
);
}
assert primaryShard.currentNodeId() != null;
final DiscoveryNode primaryNode = allocation.nodes().get(primaryShard.currentNodeId());
final StoreFilesMetadata primaryStore = findStore(primaryNode, shardStores);
if (primaryStore == null) {
// if we can't find the primary data, it is probably because the primary shard is corrupted (and listing failed)
// we want to let the replica be allocated in order to expose the actual problem with the primary that the replica
// will try and recover from
// Note, this is the existing behavior, as exposed in running CorruptFileTest#testNoPrimaryData
logger.trace("{}: no primary shard store found or allocated, letting actual allocation figure it out", unassignedShard);
return AllocateUnassignedDecision.NOT_TAKEN;
}
MatchingNodes matchingNodes = findMatchingNodes(
unassignedShard,
allocation,
false,
primaryNode,
primaryStore,
shardStores,
explain
);
assert explain == false || matchingNodes.nodeDecisions != null : "in explain mode, we must have individual node decisions";
List<NodeAllocationResult> nodeDecisions = augmentExplanationsWithStoreInfo(result.v2(), matchingNodes.nodeDecisions);
if (allocateDecision.type() != Decision.Type.YES) {
return AllocateUnassignedDecision.no(UnassignedInfo.AllocationStatus.fromDecision(allocateDecision.type()), nodeDecisions);
} else if (matchingNodes.getNodeWithHighestMatch() != null) {
RoutingNode nodeWithHighestMatch = allocation.routingNodes().node(matchingNodes.getNodeWithHighestMatch().getId());
// we only check on THROTTLE since we checked before on NO
Decision decision = allocation.deciders().canAllocate(unassignedShard, nodeWithHighestMatch, allocation);
if (decision.type() == Decision.Type.THROTTLE) {
logger.debug(
"[{}][{}]: throttling allocation [{}] to [{}] in order to reuse its unallocated persistent store",
unassignedShard.index(),
unassignedShard.id(),
unassignedShard,
nodeWithHighestMatch.node()
);
// we are throttling this, as we have enough other shards to allocate to this node, so ignore it for now
return AllocateUnassignedDecision.throttle(nodeDecisions);
} else {
logger.debug(
"[{}][{}]: allocating [{}] to [{}] in order to reuse its unallocated persistent store",
unassignedShard.index(),
unassignedShard.id(),
unassignedShard,
nodeWithHighestMatch.node()
);
// we found a match
return AllocateUnassignedDecision.yes(nodeWithHighestMatch.node(), null, nodeDecisions, true);
}
} else if (matchingNodes.hasAnyData() == false && unassignedShard.unassignedInfo().isDelayed()) {
// if we didn't manage to find *any* data (regardless of matching sizes), and the replica is
// unassigned due to a node leaving, so we delay allocation of this replica to see if the
// node with the shard copy will rejoin so we can re-use the copy it has
logger.debug("{}: allocation of [{}] is delayed", unassignedShard.shardId(), unassignedShard);
long remainingDelayMillis = 0L;
long totalDelayMillis = 0L;
if (explain) {
UnassignedInfo unassignedInfo = unassignedShard.unassignedInfo();
Metadata metadata = allocation.metadata();
IndexMetadata indexMetadata = metadata.index(unassignedShard.index());
totalDelayMillis = INDEX_DELAYED_NODE_LEFT_TIMEOUT_SETTING.get(indexMetadata.getSettings()).getMillis();
long remainingDelayNanos = unassignedInfo.getRemainingDelay(System.nanoTime(), indexMetadata.getSettings());
remainingDelayMillis = TimeValue.timeValueNanos(remainingDelayNanos).millis();
}
return AllocateUnassignedDecision.delayed(remainingDelayMillis, totalDelayMillis, nodeDecisions);
}
return AllocateUnassignedDecision.NOT_TAKEN;
}
/**
* Determines if the shard can be allocated on at least one node based on the allocation deciders.
* <p>
* Returns the best allocation decision for allocating the shard on any node (i.e. YES if at least one
* node decided YES, THROTTLE if at least one node decided THROTTLE, and NO if none of the nodes decided
* YES or THROTTLE). If in explain mode, also returns the node-level explanations as the second element
* in the returned tuple.
*/
private static Tuple<Decision, Map<String, NodeAllocationResult>> canBeAllocatedToAtLeastOneNode(
ShardRouting shard,
RoutingAllocation allocation
) {
Decision madeDecision = Decision.NO;
final boolean explain = allocation.debugDecision();
Map<String, NodeAllocationResult> nodeDecisions = explain ? new HashMap<>() : null;
for (final DiscoveryNode cursor : allocation.nodes().getDataNodes().values()) {
RoutingNode node = allocation.routingNodes().node(cursor.getId());
if (node == null) {
continue;
}
// if we can't allocate it on a node, ignore it, for example, this handles
// cases for only allocating a replica after a primary
Decision decision = allocation.deciders().canAllocate(shard, node, allocation);
if (decision.type() == Decision.Type.YES && madeDecision.type() != Decision.Type.YES) {
if (explain) {
madeDecision = decision;
} else {
return Tuple.tuple(decision, null);
}
} else if (madeDecision.type() == Decision.Type.NO && decision.type() == Decision.Type.THROTTLE) {
madeDecision = decision;
}
if (explain) {
nodeDecisions.put(node.nodeId(), new NodeAllocationResult(node.node(), null, decision));
}
}
return Tuple.tuple(madeDecision, nodeDecisions);
}
/**
* Takes the store info for nodes that have a shard store and adds them to the node decisions,
* leaving the node explanations untouched for those nodes that do not have any store information.
*/
private static List<NodeAllocationResult> augmentExplanationsWithStoreInfo(
Map<String, NodeAllocationResult> nodeDecisions,
Map<String, NodeAllocationResult> withShardStores
) {
if (nodeDecisions == null || withShardStores == null) {
return null;
}
List<NodeAllocationResult> augmented = new ArrayList<>();
for (Map.Entry<String, NodeAllocationResult> entry : nodeDecisions.entrySet()) {
if (withShardStores.containsKey(entry.getKey())) {
augmented.add(withShardStores.get(entry.getKey()));
} else {
augmented.add(entry.getValue());
}
}
return augmented;
}
/**
* Finds the store for the assigned shard in the fetched data, returns null if none is found.
*/
private static StoreFilesMetadata findStore(DiscoveryNode node, AsyncShardFetch.FetchResult<NodeStoreFilesMetadata> data) {
NodeStoreFilesMetadata nodeFilesStore = data.getData().get(node);
if (nodeFilesStore == null) {
return null;
}
return nodeFilesStore.storeFilesMetadata();
}
private MatchingNodes findMatchingNodes(
ShardRouting shard,
RoutingAllocation allocation,
boolean noMatchFailedNodes,
DiscoveryNode primaryNode,
StoreFilesMetadata primaryStore,
AsyncShardFetch.FetchResult<NodeStoreFilesMetadata> data,
boolean explain
) {
Map<DiscoveryNode, MatchingNode> matchingNodes = new HashMap<>();
Map<String, NodeAllocationResult> nodeDecisions = explain ? new HashMap<>() : null;
for (Map.Entry<DiscoveryNode, NodeStoreFilesMetadata> nodeStoreEntry : data.getData().entrySet()) {
DiscoveryNode discoNode = nodeStoreEntry.getKey();
if (noMatchFailedNodes
&& shard.unassignedInfo() != null
&& shard.unassignedInfo().getFailedNodeIds().contains(discoNode.getId())) {
continue;
}
StoreFilesMetadata storeFilesMetadata = nodeStoreEntry.getValue().storeFilesMetadata();
// we don't have any files at all, it is an empty index
if (storeFilesMetadata.isEmpty()) {
continue;
}
RoutingNode node = allocation.routingNodes().node(discoNode.getId());
if (node == null) {
continue;
}
// check if we can allocate on that node...
// we only check for NO, since if this node is THROTTLING and it has enough "same data"
// then we will try and assign it next time
Decision decision = allocation.deciders().canAllocate(shard, node, allocation);
MatchingNode matchingNode = null;
if (explain) {
matchingNode = computeMatchingNode(primaryNode, primaryStore, discoNode, storeFilesMetadata);
ShardStoreInfo shardStoreInfo = new ShardStoreInfo(matchingNode.matchingBytes);
nodeDecisions.put(node.nodeId(), new NodeAllocationResult(discoNode, shardStoreInfo, decision));
}
if (decision.type() == Decision.Type.NO) {
continue;
}
if (matchingNode == null) {
matchingNode = computeMatchingNode(primaryNode, primaryStore, discoNode, storeFilesMetadata);
}
matchingNodes.put(discoNode, matchingNode);
if (logger.isTraceEnabled()) {
if (matchingNode.isNoopRecovery) {
logger.trace("{}: node [{}] can perform a noop recovery", shard, discoNode.getName());
} else if (matchingNode.retainingSeqNo >= 0) {
logger.trace(
"{}: node [{}] can perform operation-based recovery with retaining sequence number [{}]",
shard,
discoNode.getName(),
matchingNode.retainingSeqNo
);
} else {
logger.trace(
"{}: node [{}] has [{}/{}] bytes of re-usable data",
shard,
discoNode.getName(),
new ByteSizeValue(matchingNode.matchingBytes),
matchingNode.matchingBytes
);
}
}
}
return new MatchingNodes(matchingNodes, nodeDecisions);
}
private static long computeMatchingBytes(StoreFilesMetadata primaryStore, StoreFilesMetadata storeFilesMetadata) {
long sizeMatched = 0;
for (StoreFileMetadata storeFileMetadata : storeFilesMetadata) {
String metadataFileName = storeFileMetadata.name();
if (primaryStore.fileExists(metadataFileName) && primaryStore.file(metadataFileName).isSame(storeFileMetadata)) {
sizeMatched += storeFileMetadata.length();
}
}
return sizeMatched;
}
private static boolean hasMatchingSyncId(StoreFilesMetadata primaryStore, StoreFilesMetadata replicaStore) {
String primarySyncId = primaryStore.syncId();
return primarySyncId != null && primarySyncId.equals(replicaStore.syncId());
}
private static MatchingNode computeMatchingNode(
DiscoveryNode primaryNode,
StoreFilesMetadata primaryStore,
DiscoveryNode replicaNode,
StoreFilesMetadata replicaStore
) {
final long retainingSeqNoForPrimary = primaryStore.getPeerRecoveryRetentionLeaseRetainingSeqNo(primaryNode);
final long retainingSeqNoForReplica = primaryStore.getPeerRecoveryRetentionLeaseRetainingSeqNo(replicaNode);
final boolean isNoopRecovery = (retainingSeqNoForReplica >= retainingSeqNoForPrimary && retainingSeqNoForPrimary >= 0)
|| hasMatchingSyncId(primaryStore, replicaStore);
final long matchingBytes = computeMatchingBytes(primaryStore, replicaStore);
return new MatchingNode(matchingBytes, retainingSeqNoForReplica, isNoopRecovery);
}
private static boolean canPerformOperationBasedRecovery(
StoreFilesMetadata primaryStore,
AsyncShardFetch.FetchResult<NodeStoreFilesMetadata> shardStores,
DiscoveryNode targetNode
) {
final NodeStoreFilesMetadata targetNodeStore = shardStores.getData().get(targetNode);
if (targetNodeStore == null || targetNodeStore.storeFilesMetadata().isEmpty()) {
return false;
}
if (hasMatchingSyncId(primaryStore, targetNodeStore.storeFilesMetadata())) {
return true;
}
return primaryStore.getPeerRecoveryRetentionLeaseRetainingSeqNo(targetNode) >= 0;
}
protected abstract AsyncShardFetch.FetchResult<NodeStoreFilesMetadata> fetchData(ShardRouting shard, RoutingAllocation allocation);
/**
* Returns a boolean indicating whether fetching shard data has been triggered at any point for the given shard.
*/
protected abstract boolean hasInitiatedFetching(ShardRouting shard);
private static class MatchingNode {
static final Comparator<MatchingNode> COMPARATOR = Comparator.<MatchingNode, Boolean>comparing(m -> m.isNoopRecovery)
.thenComparing(m -> m.retainingSeqNo)
.thenComparing(m -> m.matchingBytes);
final long matchingBytes;
final long retainingSeqNo;
final boolean isNoopRecovery;
MatchingNode(long matchingBytes, long retainingSeqNo, boolean isNoopRecovery) {
this.matchingBytes = matchingBytes;
this.retainingSeqNo = retainingSeqNo;
this.isNoopRecovery = isNoopRecovery;
}
boolean anyMatch() {
return isNoopRecovery || retainingSeqNo >= 0 || matchingBytes > 0;
}
}
static class MatchingNodes {
private final Map<DiscoveryNode, MatchingNode> matchingNodes;
private final DiscoveryNode nodeWithHighestMatch;
@Nullable
private final Map<String, NodeAllocationResult> nodeDecisions;
MatchingNodes(Map<DiscoveryNode, MatchingNode> matchingNodes, @Nullable Map<String, NodeAllocationResult> nodeDecisions) {
this.matchingNodes = matchingNodes;
this.nodeDecisions = nodeDecisions;
this.nodeWithHighestMatch = matchingNodes.entrySet()
.stream()
.filter(e -> e.getValue().anyMatch())
.max(Comparator.comparing(Map.Entry::getValue, MatchingNode.COMPARATOR))
.map(Map.Entry::getKey)
.orElse(null);
}
/**
* Returns the node with the highest "non zero byte" match compared to
* the primary.
*/
@Nullable
public DiscoveryNode getNodeWithHighestMatch() {
return this.nodeWithHighestMatch;
}
boolean canPerformNoopRecovery(DiscoveryNode node) {
final MatchingNode matchingNode = matchingNodes.get(node);
return matchingNode.isNoopRecovery;
}
/**
* Did we manage to find any data, regardless how well they matched or not.
*/
public boolean hasAnyData() {
return matchingNodes.isEmpty() == false;
}
}
}