diff --git a/joss.06593/10.21105.joss.06593.crossref.xml b/joss.06593/10.21105.joss.06593.crossref.xml new file mode 100644 index 0000000000..bc5c84383e --- /dev/null +++ b/joss.06593/10.21105.joss.06593.crossref.xml @@ -0,0 +1,738 @@ + + + + 20240615125635-d99598292210167115ee1278b7d8101c281109c2 + 20240615125635 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 06 + 2024 + + + 9 + + 98 + + + + Re-Envisioning Numerical Information Field Theory +(NIFTy.re): A Library for Gaussian Processes and Variational +Inference + + + + Gordian + Edenhofer + https://orcid.org/0000-0003-3122-4894 + + + Philipp + Frank + https://orcid.org/0000-0001-5610-3779 + + + Jakob + Roth + https://orcid.org/0000-0002-8873-8215 + + + Reimar H. + Leike + https://orcid.org/0000-0002-1640-6772 + + + Massin + Guerdi + + + Lukas I. + Scheel-Platz + https://orcid.org/0000-0003-0809-9634 + + + Matteo + Guardiani + https://orcid.org/0000-0002-4905-6692 + + + Vincent + Eberle + https://orcid.org/0000-0002-5713-3475 + + + Margret + Westerkamp + https://orcid.org/0000-0001-7218-8282 + + + Torsten A. + Enßlin + https://orcid.org/0000-0001-5246-1624 + + + + 06 + 15 + 2024 + + + 6593 + + + 10.21105/joss.06593 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.11441976 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6593 + + + + 10.21105/joss.06593 + https://joss.theoj.org/papers/10.21105/joss.06593 + + + https://joss.theoj.org/papers/10.21105/joss.06593.pdf + + + + + + Unified radio interferometric calibration and +imaging with joint uncertainty quantification + Arras + Astronomy & Astrophysics + 627 + 10.1051/0004-6361/201935555 + 2019 + Arras, P., Frank, P., Leike, R., +Westermann, R., & Enßlin, T. A. (2019). Unified radio +interferometric calibration and imaging with joint uncertainty +quantification. Astronomy & Astrophysics, 627, A134. +https://doi.org/10.1051/0004-6361/201935555 + + + NIFTy5: Numerical Information Field Theory +v5 + Arras + 2019 + Arras, P., Baltac, M., Ensslin, T. +A., Frank, P., Hutschenreuter, S., Knollmueller, J., Leike, R., +Newrzella, M.-N., Platz, L., Reinecke, M., & Stadler, J. (2019). +NIFTy5: Numerical Information Field Theory v5. Astrophysics Source Code +Library, record ascl:1903.008. + + + Variable structures in M87* from space, time +and frequency resolved interferometry + Arras + Nature Astronomy + 6 + 10.1038/s41550-021-01548-0 + 2022 + Arras, P., Frank, P., Haim, P., +Knollmüller, J., Leike, R. H., Reinecke, M., & Enßlin, T. A. (2022). +Variable structures in M87* from space, time and frequency resolved +interferometry. Nature Astronomy, 6, 259–269. +https://doi.org/10.1038/s41550-021-01548-0 + + + Pyro: Deep universal probabilistic +programming + Bingham + Journal of Machine Learning +Research + 20 + 2019 + Bingham, E., Chen, J. P., Jankowiak, +M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P. +A., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal +probabilistic programming. Journal of Machine Learning Research, 20, +28:1–28:6. +http://jmlr.org/papers/v20/18-403.html + + + Blackjax: A sampling library for +JAX + Cabezas + 2023 + Cabezas, L., Alberto, & Louf, R. +(2023). Blackjax: A sampling library for JAX (Version v1.1.0). +http://github.com/blackjax-devs/blackjax + + + Efficient and modular implicit +differentiation + Blondel + 35 + 2022 + Blondel, M., Berthet, Q., Cuturi, M., +Frostig, R., Hoyer, S., Llinares-Lopez, F., Pedregosa, F., & Vert, +J.-P. (2022). Efficient and modular implicit differentiation. 35, +5230–5242. +https://proceedings.neurips.cc/paper_files/paper/2022/file/228b9279ecf9bbafe582406850c57115-Paper-Conference.pdf + + + Stan: A probabilistic programming +language + Carpenter + Journal of Statistical +Software + 1 + 76 + 10.18637/jss.v076.i01 + 2017 + Carpenter, B., Gelman, A., Hoffman, +M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, +P., & Riddell, A. (2017). Stan: A probabilistic programming +language. Journal of Statistical Software, 76(1), 1–32. +https://doi.org/10.18637/jss.v076.i01 + + + The DeepMind JAX Ecosystem + DeepMind + 2020 + DeepMind, Babuschkin, I., Baumli, K., +Bell, A., Bhupatiraju, S., Bruce, J., Buchlovsky, P., Budden, D., Cai, +T., Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., Godwin, J., +Jones, C., Hemsley, R., Hennigan, T., Hessel, M., Hou, S., … Viola, F. +(2020). The DeepMind JAX Ecosystem. +http://github.com/google-deepmind + + + DUCC: Distinctly useful code +collection + Reinecke + 2024 + Reinecke, M. (2024). DUCC: Distinctly +useful code collection (Version 0.33.0). +https://gitlab.mpcdf.mpg.de/mtr/ducc + + + Butterfly Transforms for Efficient +Representation of Spatially Variant Point Spread Functions in Bayesian +Imaging + Eberle + Entropy + 4 + 25 + 10.3390/e25040652 + 2023 + Eberle, V., Frank, P., Stadler, J., +Streit, S., & Enßlin, T. (2023). Butterfly Transforms for Efficient +Representation of Spatially Variant Point Spread Functions in Bayesian +Imaging. Entropy, 25(4), 652. +https://doi.org/10.3390/e25040652 + + + Efficient representations of spatially +variant point spread functions with butterfly transforms in bayesian +imaging algorithms + Eberle + Physical Sciences Forum + 1 + 5 + 10.3390/psf2022005033 + 2673-9984 + 2022 + Eberle, V., Frank, P., Stadler, J., +Streit, S., & Enßlin, T. (2022). Efficient representations of +spatially variant point spread functions with butterfly transforms in +bayesian imaging algorithms. Physical Sciences Forum, 5(1). +https://doi.org/10.3390/psf2022005033 + + + Sparse kernel gaussian processes through +iterative charted refinement (ICR) + Edenhofer + 10.48550/ARXIV.2206.10634 + 2022 + Edenhofer, G., Leike, R. H., Frank, +P., & Enßlin, T. A. (2022). Sparse kernel gaussian processes through +iterative charted refinement (ICR). arXiv. +https://doi.org/10.48550/ARXIV.2206.10634 + + + A parsec-scale Galactic 3D dust map out to +1.25 kpc from the Sun + Edenhofer + Astronomy & Astrophysics + 685 + 10.1051/0004-6361/202347628 + 2024 + Edenhofer, G., Zucker, C., Frank, P., +Saydjari, A. K., Speagle, J. S., Finkbeiner, D., & Enßlin, T. A. +(2024). A parsec-scale Galactic 3D dust map out to 1.25 kpc from the +Sun. Astronomy & Astrophysics, 685, A82. +https://doi.org/10.1051/0004-6361/202347628 + + + emcee: The MCMC Hammer + Foreman-Mackey + Publications of the Astronomical Society of +the Pacific + 925 + 125 + 10.1086/670067 + 2013 + Foreman-Mackey, D., Hogg, D. W., +Lang, D., & Goodman, J. (2013). emcee: The MCMC Hammer. Publications +of the Astronomical Society of the Pacific, 125(925), 306. +https://doi.org/10.1086/670067 + + + dfm/tinygp: The tiniest of Gaussian Process +libraries + Foreman-Mackey + 10.5281/zenodo.10463641 + 2024 + Foreman-Mackey, D., Yu, W., Yadav, +S., Becker, M. R., Caplar, N., Huppenkothen, D., Killestein, T., +Tronsgaard, R., Rashid, T., & Schmerler, S. (2024). dfm/tinygp: The +tiniest of Gaussian Process libraries (Version v0.3.0). Zenodo. +https://doi.org/10.5281/zenodo.10463641 + + + Field dynamics inference via spectral density +estimation + Frank + Physical Review E + 5 + 96 + 10.1103/PhysRevE.96.052104 + 2017 + Frank, P., Steininger, T., & +Enßlin, T. A. (2017). Field dynamics inference via spectral density +estimation. Physical Review E, 96(5), 052104. +https://doi.org/10.1103/PhysRevE.96.052104 + + + Geometric variational +inference + Frank + Entropy + 7 + 23 + 10.3390/e23070853 + 2021 + Frank, P., Leike, R. H., & +Enßlin, T. A. (2021). Geometric variational inference. Entropy, 23(7), +853. https://doi.org/10.3390/e23070853 + + + Geometric variational inference and its +application to bayesian imaging + Frank + Physical Sciences Forum + 1 + 5 + 10.3390/psf2022005006 + 2673-9984 + 2022 + Frank, P. (2022). Geometric +variational inference and its application to bayesian imaging. Physical +Sciences Forum, 5(1). +https://doi.org/10.3390/psf2022005006 + + + Causal, bayesian, & non-parametric +modeling of the SARS-CoV-2 viral load distribution vs. Patient’s +age + Guardiani + PLOS ONE + 10 + 17 + 10.1371/journal.pone.0275011 + 2022 + Guardiani, M., Frank, P., Kostić, A., +Edenhofer, G., Roth, J., Uhlmann, B., & Enßlin, T. (2022). Causal, +bayesian, & non-parametric modeling of the SARS-CoV-2 viral load +distribution vs. Patient’s age. PLOS ONE, 17(10), 1–21. +https://doi.org/10.1371/journal.pone.0275011 + + + Scalable variational gaussian process +classification. + Hensman + AISTATS + 38 + 2015 + Hensman, J., G. Matthews, A. G. de, +& Ghahramani, Z. (2015). Scalable variational gaussian process +classification. In G. Lebanon & S. V. N. Vishwanathan (Eds.), +AISTATS (Vol. 38). JMLR.org. +http://dblp.uni-trier.de/db/conf/aistats/aistats2015.html#HensmanMG15 + + + The Galactic Faraday rotation sky +2020 + Hutschenreuter + Astronomy & Astrophysics + 657 + 10.1051/0004-6361/202140486 + 2022 + Hutschenreuter, S., Anderson, C. S., +Betti, S., Bower, G. C., Brown, J.-A., Brüggen, M., Carretti, E., +Clarke, T., Clegg, A., Costa, A., Croft, S., Van Eck, C., Gaensler, B. +M., de Gasperin, F., Haverkorn, M., Heald, G., Hull, C. L. H., Inoue, +M., Johnston-Hollitt, M., … Enßlin, T. A. (2022). The Galactic Faraday +rotation sky 2020. Astronomy & Astrophysics, 657, A43. +https://doi.org/10.1051/0004-6361/202140486 + + + Disentangling the Faraday rotation +sky + Hutschenreuter + arXiv e-prints + 10.48550/arXiv.2304.12350 + 2023 + Hutschenreuter, S., Haverkorn, M., +Frank, P., Raycheva, N. C., & Enßlin, T. A. (2023). Disentangling +the Faraday rotation sky. arXiv e-Prints, arXiv:2304.12350. +https://doi.org/10.48550/arXiv.2304.12350 + + + JAX: Composable transformations of +Python+NumPy programs + Bradbury + 2018 + Bradbury, J., Frostig, R., Hawkins, +P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., +VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: +Composable transformations of Python+NumPy programs (Version 0.3.13). +http://github.com/google/jax + + + Equinox: Neural networks in JAX via callable +PyTrees and filtered transformations + Kidger + Differentiable Programming workshop at Neural +Information Processing Systems 2021 + 2021 + Kidger, P., & Garcia, C. (2021). +Equinox: Neural networks in JAX via callable PyTrees and filtered +transformations. Differentiable Programming Workshop at Neural +Information Processing Systems 2021. + + + Metric gaussian variational +inference + Knollmüller + 10.48550/ARXIV.1901.11033 + 2019 + Knollmüller, J., & Enßlin, T. A. +(2019). Metric gaussian variational inference. arXiv. +https://doi.org/10.48550/ARXIV.1901.11033 + + + Joshspeagle/dynesty: v2.1.3 + Koposov + 10.5281/zenodo.8408702 + 2023 + Koposov, S., Speagle, J., Barbary, +K., Ashton, G., Bennett, E., Buchner, J., Scheffler, C., Cook, B., +Talbot, C., Guillochon, J., Cubillos, P., Ramos, A. A., Johnson, B., +Lang, D., Ilya, Dartiailh, M., Nitz, A., McCluskey, A., & Archibald, +A. (2023). Joshspeagle/dynesty: v2.1.3 (Version v2.1.3). Zenodo. +https://doi.org/10.5281/zenodo.8408702 + + + Charting nearby dust clouds using Gaia data +only + Leike + Astronomy & Astrophysics + 631 + 10.1051/0004-6361/201935093 + 2019 + Leike, R. H., & Enßlin, T. A. +(2019). Charting nearby dust clouds using Gaia data only. Astronomy +& Astrophysics, 631, A32. +https://doi.org/10.1051/0004-6361/201935093 + + + Resolving nearby dust clouds + Leike + Astronomy & Astrophysics + 639 + 10.1051/0004-6361/202038169 + 2020 + Leike, R. H., Glatzle, M., & +Enßlin, T. A. (2020). Resolving nearby dust clouds. Astronomy & +Astrophysics, 639, A138. +https://doi.org/10.1051/0004-6361/202038169 + + + The Galactic 3D large-scale dust distribution +via Gaussian process regression on spherical coordinates + Leike + arXiv e-prints + 10.48550/arXiv.2204.11715 + 2022 + Leike, R. H., Edenhofer, G., +Knollmüller, J., Alig, C., Frank, P., & Enßlin, T. A. (2022). The +Galactic 3D large-scale dust distribution via Gaussian process +regression on spherical coordinates. arXiv e-Prints, arXiv:2204.11715. +https://doi.org/10.48550/arXiv.2204.11715 + + + GPflow: A gaussian process library using +tensorflow + De G. Matthews + Journal of Machine Learning +Research + 1 + 18 + 1532-4435 + 2017 + De G. Matthews, A. G., Van Der Wilk, +M., Nickson, T., Fujii, K., Boukouvalas, A., León-Villagrá, P., +Ghahramani, Z., & Hensman, J. (2017). GPflow: A gaussian process +library using tensorflow. Journal of Machine Learning Research, 18(1), +1299–1304. + + + Bayesian inference of three-dimensional gas +maps. II. Galactic HI + Mertsch + Astronomy & Astrophysics + 671 + 10.1051/0004-6361/202243326 + 2023 + Mertsch, P., & Phan, V. H. M. +(2023). Bayesian inference of three-dimensional gas maps. II. Galactic +HI. Astronomy & Astrophysics, 671, A54. +https://doi.org/10.1051/0004-6361/202243326 + + + Composable Effects for Flexible and +Accelerated Probabilistic Programming in NumPyro + Phan + arXiv e-prints + 10.48550/arXiv.1912.11554 + 2019 + Phan, D., Pradhan, N., & +Jankowiak, M. (2019). Composable Effects for Flexible and Accelerated +Probabilistic Programming in NumPyro. arXiv e-Prints, arXiv:1912.11554. +https://doi.org/10.48550/arXiv.1912.11554 + + + Variational inference with normalizing +flows + Rezende + Proceedings of the 32nd international +conference on international conference on machine learning - volume +37 + 2015 + Rezende, D. J., & Mohamed, S. +(2015). Variational inference with normalizing flows. Proceedings of the +32nd International Conference on International Conference on Machine +Learning - Volume 37, 1530–1538. +http://proceedings.mlr.press/v37/rezende15.html + + + Bayesian radio interferometric imaging with +direction-dependent calibration + Roth + Astronomy & Astrophysics + 678 + 10.1051/0004-6361/202346851 + 2023 + Roth, J., Arras, P., Reinecke, M., +Perley, R. A., Westermann, R., & Enßlin, T. A. (2023). Bayesian +radio interferometric imaging with direction-dependent calibration. +Astronomy & Astrophysics, 678, A177. +https://doi.org/10.1051/0004-6361/202346851 + + + Fast-cadence High-contrast Imaging with +Information Field Theory + Roth + The Astronomical Journal + 3 + 165 + 10.3847/1538-3881/acabc1 + 2023 + Roth, J., Li Causi, G., Testa, V., +Arras, P., & Ensslin, T. A. (2023). Fast-cadence High-contrast +Imaging with Information Field Theory. The Astronomical Journal, 165(3), +86. https://doi.org/10.3847/1538-3881/acabc1 + + + Probabilistic programming in python using +PyMC3 + Salvatier + PeerJ Computer Science + 2 + 10.7717/peerj-cs.55 + 2376-5992 + 2016 + Salvatier, J., Wiecki, T. V., & +Fonnesbeck, C. (2016). Probabilistic programming in python using PyMC3. +PeerJ Computer Science, 2, e55. +https://doi.org/10.7717/peerj-cs.55 + + + Multicomponent imaging of the Fermi gamma-ray +sky in the spatio-spectral domain + Scheel-Platz + Astronomy & Astrophysics + 680 + 10.1051/0004-6361/202243819 + 2023 + Scheel-Platz, L. I., Knollmüller, J., +Arras, P., Frank, P., Reinecke, M., Jüstel, D., & Enßlin, T. A. +(2023). Multicomponent imaging of the Fermi gamma-ray sky in the +spatio-spectral domain. Astronomy & Astrophysics, 680, A2. +https://doi.org/10.1051/0004-6361/202243819 + + + NIFTY - Numerical Information Field Theory. A +versatile PYTHON library for signal inference + Selig + Astronomy & Astrophysics + 554 + 10.1051/0004-6361/201321236 + 2013 + Selig, M., Bell, M. R., Junklewitz, +H., Oppermann, N., Reinecke, M., Greiner, M., Pachajoa, C., & +Enßlin, T. A. (2013). NIFTY - Numerical Information Field Theory. A +versatile PYTHON library for signal inference. In Astronomy & +Astrophysics (Vol. 554, p. A26). +https://doi.org/10.1051/0004-6361/201321236 + + + Fast Direct Methods for Gaussian +Processes + Ambikasaran + IEEE Transactions on Pattern Analysis and +Machine Intelligence + 38 + 10.1109/TPAMI.2015.2448083 + 2015 + Ambikasaran, S., Foreman-Mackey, D., +Greengard, L., Hogg, D. W., & O’Neil, M. (2015). Fast Direct Methods +for Gaussian Processes. IEEE Transactions on Pattern Analysis and +Machine Intelligence, 38, 252. +https://doi.org/10.1109/TPAMI.2015.2448083 + + + DYNESTY: a dynamic nested sampling package +for estimating Bayesian posteriors and evidences + Speagle + Monthly Notices of the RAS + 3 + 493 + 10.1093/mnras/staa278 + 2020 + Speagle, J. S. (2020). DYNESTY: a +dynamic nested sampling package for estimating Bayesian posteriors and +evidences. Monthly Notices of the RAS, 493(3), 3132–3158. +https://doi.org/10.1093/mnras/staa278 + + + NIFTy 3 - Numerical Information Field Theory: +A Python Framework for Multicomponent Signal Inference on HPC +Clusters + Steininger + Annalen der Physik + 3 + 531 + 10.1002/andp.201800290 + 2019 + Steininger, T., Dixit, J., Frank, P., +Greiner, M., Hutschenreuter, S., Knollmüller, J., Leike, R. H., +Porqueres, N., Pumpe, D., Reinecke, M., Šraml, M., Varady, C., & +Enßlin, T. A. (2019). NIFTy 3 - Numerical Information Field Theory: A +Python Framework for Multicomponent Signal Inference on HPC Clusters. +Annalen Der Physik, 531(3), 1800290. +https://doi.org/10.1002/andp.201800290 + + + Reconstructing Galactic magnetic fields from +local measurements for backtracking ultra-high-energy cosmic +rays + Tsouros + Astronomy & Astrophysics + 681 + 10.1051/0004-6361/202346423 + 2024 + Tsouros, A., Edenhofer, G., Enßlin, +T., Mastorakis, M., & Pavlidou, V. (2024). Reconstructing Galactic +magnetic fields from local measurements for backtracking +ultra-high-energy cosmic rays. Astronomy & Astrophysics, 681, A111. +https://doi.org/10.1051/0004-6361/202346423 + + + Reconstructing non-repeating radio pulses +with Information Field Theory + Welling + Journal of Cosmology and Astroparticle +Physics + 4 + 2021 + 10.1088/1475-7516/2021/04/071 + 2021 + Welling, C., Frank, P., Enßlin, T., +& Nelles, A. (2021). Reconstructing non-repeating radio pulses with +Information Field Theory. Journal of Cosmology and Astroparticle +Physics, 2021(4), 071. +https://doi.org/10.1088/1475-7516/2021/04/071 + + + First spatio-spectral Bayesian imaging of +SN1006 in X-ray + Westerkamp + arXiv e-prints + 10.48550/arXiv.2308.09176 + 2023 + Westerkamp, M., Eberle, V., +Guardiani, M., Frank, P., Platz, L., Arras, P., Knollmüller, J., +Stadler, J., & Enßlin, T. (2023). First spatio-spectral Bayesian +imaging of SN1006 in X-ray. arXiv e-Prints, arXiv:2308.09176. +https://doi.org/10.48550/arXiv.2308.09176 + + + + + + diff --git a/joss.06593/10.21105.joss.06593.pdf b/joss.06593/10.21105.joss.06593.pdf new file mode 100644 index 0000000000..90b0e57b60 Binary files /dev/null and b/joss.06593/10.21105.joss.06593.pdf differ diff --git a/joss.06593/paper.jats/10.21105.joss.06593.jats b/joss.06593/paper.jats/10.21105.joss.06593.jats new file mode 100644 index 0000000000..7c91b03379 --- /dev/null +++ b/joss.06593/paper.jats/10.21105.joss.06593.jats @@ -0,0 +1,1695 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6593 +10.21105/joss.06593 + +Re-Envisioning Numerical Information Field Theory +(NIFTy.re): A Library for Gaussian Processes and Variational +Inference + + + +https://orcid.org/0000-0003-3122-4894 + +Edenhofer +Gordian + + + + +* + + +https://orcid.org/0000-0001-5610-3779 + +Frank +Philipp + + + + +https://orcid.org/0000-0002-8873-8215 + +Roth +Jakob + + + + + + +https://orcid.org/0000-0002-1640-6772 + +Leike +Reimar H. + + + + + +Guerdi +Massin + + + + +https://orcid.org/0000-0003-0809-9634 + +Scheel-Platz +Lukas I. + + + + + + +https://orcid.org/0000-0002-4905-6692 + +Guardiani +Matteo + + + + + +https://orcid.org/0000-0002-5713-3475 + +Eberle +Vincent + + + + + +https://orcid.org/0000-0001-7218-8282 + +Westerkamp +Margret + + + + + +https://orcid.org/0000-0001-5246-1624 + +Enßlin +Torsten A. + + + + + + +Max Planck Institute for Astrophysics, +Karl-Schwarzschild-Straße 1, 85748 Garching bei München, +Germany + + + + +Ludwig Maximilian University of Munich, +Geschwister-Scholl-Platz 1, 80539 München, Germany + + + + +Department of Astrophysics, University of Vienna, +Türkenschanzstraße 17, A-1180 Vienna, Austria + + + + +School of Computation, Information and Technology, +Technical University of Munich, Arcisstr. 21, 80333 München, +Germany + + + + +Independent Researcher, USA + + + + +Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 +Neuherberg, Germany + + + + +School of Medicine and Health, Technical University of +Munich, Ismaninger Str. 22, 81675 München, Germany + + + + +* E-mail: + + +21 +2 +2024 + +9 +98 +6593 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +Astronomy +Imaging +Gaussian Processes +Variational Inference + + + + + + Summary +

Imaging is the process of transforming noisy, incomplete data into + a space that humans can interpret. NIFTy is a + Bayesian framework for imaging and has already successfully been + applied to many fields in astrophysics. Previous design decisions held + the performance and the development of methods in + NIFTy back. We present a rewrite of + NIFTy, coined NIFTy.re, + which reworks the modeling principle, extends the inference + strategies, and outsources much of the heavy lifting to JAX. The + rewrite dramatically accelerates models written in + NIFTy, lays the foundation for new types of + inference machineries, improves maintainability, and enables + interoperability between NIFTy and the JAX + machine learning ecosystem.

+
+ + Statement of Need +

Imaging commonly involves millions to billions of pixels. Each + pixel usually corresponds to one or more correlated degrees of freedom + in the model space. Modeling this many degrees of freedom is + computationally demanding. However, imaging is not only + computationally demanding but also statistically challenging. The + noise in the data requires a statistical treatment and needs to be + accurately propagated from the data to the uncertainties in the final + image. To do this, we require an inference machinery that not only + handles extremely high-dimensional spaces, but one that does so in a + statistically rigorous way.

+

NIFTy is a Bayesian imaging library + (Arras, + Baltac, et al., 2019; + Selig + et al., 2013; + Steininger + et al., 2019). It is designed to infer the million- to + billion-dimensional posterior distribution in the image space from + noisy input data. At the core of NIFTy lies a + set of powerful Gaussian Process (GP) models and accurate Variational + Inference (VI) algorithms.

+

NIFTy.re is a rewrite of + NIFTy in JAX + (Bradbury + et al., 2018) with all relevant previous GP models, new, more + flexible GP models, and a more flexible machinery for approximating + posterior distributions. Being written in JAX, + NIFTy.re effortlessly runs on accelerator + hardware such as the GPU and TPU, vectorizes models whenever possible, + and just-in-time compiles code for additional performance. + NIFTy.re switches from a home-grown automatic + differentiation engine that was used in NIFTy + to JAX’s automatic differentiation engine. This lays the foundation + for new types of inference machineries that make use of the higher + order derivatives provided by JAX. Through these changes, we envision + to harness significant gains in maintainability of + NIFTy.re compared to + NIFTy and a faster development cycle for new + features.

+

We expect NIFTy.re to be highly useful for + many imaging applications and envision many applications within and + outside of astrophysics + (Arras, + Frank, et al., 2019; + Arras + et al., 2022; + Eberle + et al., 2022, + 2023; + Frank + et al., 2017; + S. + Hutschenreuter et al., 2022; + Sebastian + Hutschenreuter et al., 2023; + Leike + et al., 2020; + Leike + & Enßlin, 2019; + Mertsch + & Phan, 2023; + J. + Roth et al., 2023; + Jakob + Roth et al., 2023; + Scheel-Platz + et al., 2023; + Tsouros + et al., 2024; + Welling + et al., 2021; + Westerkamp + et al., 2023). NIFTy.re has already been + successfully used in two galactic tomography publications + (Edenhofer + et al., 2024; + Leike + et al., 2022). A very early version of + NIFTy.re enabled a 100-billion-dimensional + reconstruction using a maximum posterior inference. In a newer + publication, NIFTy.re was used to infer a + 500-million-dimensional posterior distribution using VI + (Knollmüller + & Enßlin, 2019). The latter publication extensively used + NIFTy.re’s GPU support to reduce the runtime by + two orders of magnitude compared to the CPU. With + NIFTy.re bridging ideas from + NIFTy to JAX, we envision many new + possibilities for inferring classical machine learning models with + NIFTy’s inference methods and a plethora of + opportunities to use NIFTy-components such as + the GP models in classical neural network frameworks.

+

NIFTy.re competes with other GP libraries as + well as with probabilistic programming languages and frameworks. + Compared to GPyTorch + (Hensman + et al., 2015), GPflow + (De + G. Matthews et al., 2017), george + (Ambikasaran + et al., 2015), or TinyGP + (Foreman-Mackey + et al., 2024), NIFTy.re focuses on GP + models for structured spaces and does not assume the posterior to be + analytically accessible. Instead, NIFTy.re + tries to approximate the true posterior using VI. Compared to + classical probabilistic programming languages such as Stan + (Carpenter + et al., 2017) and frameworks such as Pyro + (Bingham + et al., 2019), NumPyro + (Phan + et al., 2019), pyMC3 + (Salvatier + et al., 2016), emcee + (Foreman-Mackey + et al., 2013), dynesty + (Koposov + et al., 2023; + Speagle, + 2020), or BlackJAX + (Cabezas + & Louf, 2023), NIFTy.re focuses on + inference in extremely high-dimensional spaces. + NIFTy.re exploits the structure of + probabilistic models in its VI techniques + (Frank + et al., 2021). With NIFTy.re, the GP + models and the VI machinery are now fully accessible in the JAX + ecosystem and NIFTy.re components interact + seamlessly with other JAX packages such as BlackJAX and JAXopt/Optax + (Blondel + et al., 2022; + DeepMind + et al., 2020).

+
+ + Core Components +

NIFTy.re brings tried and tested structured + GP models and VI algorithms to JAX. GP models are highly useful for + imaging problems, and VI algorithms are essential to probe + high-dimensional posteriors, which are often encountered in imaging + problems. NIFTy.re infers the parameters of + interest from noisy data via a stochastic mapping that goes in the + opposite direction, from the parameters of interest to the data.

+

NIFTy and NIFTy.re + build up hierarchical models for the posterior inference. The + log-posterior function reads + + lnp(θ|d):=(d,f(θ))+lnp(θ)+const + with log-likelihood + + , + forward model + + f + mapping the parameters of interest + + θ + to the data space, and log-prior + + lnp(θ). + The goal of the inference is to draw samples from the posterior + + + p(θ|d).

+

What is considered part of the likelihood versus part of the prior + is ill-defined. Without loss of generality, + NIFTy and NIFTy.re + re-formulate models such that the prior is always standard Gaussian. + They implicitly define a mapping from a new latent space with a priori + standard Gaussian parameters + + ξ + to the parameters of interest + + θ. + The mapping + + θ(ξ) + is incorporated into the forward model + + f(θ(ξ)) + in such a way that all relevant details of the prior model are encoded + in the forward model. This choice of re-parameterization + (Rezende + & Mohamed, 2015) is called standardization. It is often + carried out implicitly in the background without user input.

+ + Gaussian Processes +

One standard tool from the NIFTy.re + toolbox is the so-called correlated field GP model from + NIFTy. This model relies on the harmonic + domain being easily accessible. For example, for pixels spaced on a + regular Cartesian grid, the natural choice to represent a stationary + kernel is the Fourier domain. In the generative picture, a + realization + + s + drawn from a GP then reads + + s=FTPξ + with + + FT + the (fast) Fourier transform, + + P + the square-root of the power-spectrum in harmonic space, and + + + ξ + standard Gaussian random variables. In the implementation in + NIFTy.re and NIFTy, + the user can choose between two adaptive kernel models, a + non-parametric kernel + + P + and a Matérn kernel + + P + (Arras + et al., 2022; + Guardiani + et al., 2022 for details on their implementation). A code + example that initializes a non-parametric GP prior for a + + + 128×128 + space with unit volume is shown in the following.

+ from nifty8 import re as jft + +dims = (128, 128) +cfm = jft.CorrelatedFieldMaker("cf") +cfm.set_amplitude_total_offset(offset_mean=2, offset_std=(1e-1, 3e-2)) +# Parameters for the kernel and the regular 2D Cartesian grid for which +# it is defined +cfm.add_fluctuations( + dims, + distances=tuple(1.0 / d for d in dims), + fluctuations=(1.0, 5e-1), + loglogavgslope=(-3.0, 2e-1), + flexibility=(1e0, 2e-1), + asperity=(5e-1, 5e-2), + prefix="ax1", + non_parametric_kind="power", +) +# Get the forward model for the GP prior +correlated_field = cfm.finalize() +

Not all problems are well described by regularly spaced pixels. + For more complicated pixel spacings, NIFTy.re + features Iterative Charted Refinement + (Edenhofer + et al., 2022), a GP model for arbitrarily deformed spaces. + This model exploits nearest neighbor relations on various + coarsenings of the discretized modeled space and runs very + efficiently on GPUs. For one-dimensional problems with arbitrarily + spaced pixels, NIFTy.re also implements + multiple flavors of Gauss-Markov processes.

+
+ + Building Up Complex Models +

Models are rarely just a GP prior. Commonly, a model contains at + least a few non-linearities that transform the GP prior or combine + it with other random variables. For building more complex models, + NIFTy.re provides a + Model class that offers a somewhat familiar + object-oriented design yet is fully JAX compatible and functional + under the hood. The following code shows how to build a slightly + more complex model using the objects from the previous example.

+ from jax import numpy as jnp + + +class Forward(jft.Model): + def __init__(self, correlated_field): + self._cf = correlated_field + # Tracks a callable with which the model can be initialized. This + # is not strictly required, but comes in handy when building deep + # models. Note, the init method (short for "initialization" method) + # is not to be confused with the prior, which is always standard + # Gaussian. + super().__init__(init=correlated_field.init) + + def __call__(self, x): + # NOTE, any kind of masking of the output, non-linear and linear + # transformation could be carried out here. Models can also be + # combined and nested in any way and form. + return jnp.exp(self._cf(x)) + + +forward = Forward(correlated_field) + +data = jnp.load("data.npy") +lh = jft.Poissonian(data).amend(forward) +

All GP models in NIFTy.re as well as all + likelihoods behave like instances of + jft.Model, meaning that JAX understands what + it means if a computation involves self, + other jft.Model instances, or their + attributes. In other words, correlated_field, + forward, and lh from + the code snippets shown here are all so-called pytrees in JAX, and, + for example, the following is valid code + jax.jit(lambda l, x: l(x))(lh, x0) with + x0 some arbitrarily chosen valid input to + lh. Inspired by equinox + (Kidger + & Garcia, 2021), individual attributes of the class can + be marked as non-static or static via + dataclass.field(metadata=dict(static=...)) + for the purpose of compiling. Depending on the value, JAX will + either treat the attribute as an unknown placeholder or as a known + concrete attribute and potentially inline it during compilation. + This mechanism is extensively used in likelihoods to avoid inlining + large constants such as the data and to avoid expensive + re-compilations whenever possible.

+
+ + Variational Inference +

NIFTy.re is built for models with millions + to billions of degrees of freedom. To probe the posterior + efficiently and accurately, NIFTy.re relies + on VI. Specifically, NIFTy.re implements + Metric Gaussian Variational Inference (MGVI) and its successor + geometric Variational Inference (geoVI) + (Frank + et al., 2021; + Frank, + 2022; + Knollmüller + & Enßlin, 2019). At the core of both MGVI and geoVI lies + an alternating procedure in which one switches between optimizing + the Kullback–Leibler divergence for a specific shape of the + variational posterior and updating the shape of the variational + posterior. MGVI and geoVI define the variational posterior via + samples, specifically, via samples drawn around an expansion point. + The samples in MGVI and geoVI exploit model-intrinsic knowledge of + the posterior’s approximate shape, encoded in the Fisher information + metric and the prior curvature + (Frank + et al., 2021).

+

NIFTy.re allows for much finer control + over the way samples are drawn and updated compared to + NIFTy. NIFTy.re + exposes stand-alone functions for drawing MGVI and geoVI samples + from any arbitrary model with a likelihood from + NIFTy.re and a forward model that is + differentiable by JAX. In addition to stand-alone sampling + functions, NIFTy.re provides tools to + configure and execute the alternating Kullback–Leibler divergence + optimization and sample adaption at a lower abstraction level. These + tools are provided in a JAXopt/Optax-style optimizer class + (Blondel + et al., 2022; + DeepMind + et al., 2020).

+

A typical minimization with NIFTy.re is + shown in the following. It retrieves six independent, antithetically + mirrored samples from the approximate posterior via 25 iterations of + alternating between optimization and sample adaption. The final + result is stored in the samples variable. A + convenient one-shot wrapper for the code below is + jft.optimize_kl. By virtue of all modeling + tools in NIFTy.re being written in JAX, it is + also possible to combine NIFTy.re tools with + BlackJAX + (Cabezas + & Louf, 2023) or any other posterior sampler in the JAX + ecosystem.

+ from jax import random + +key = random.PRNGKey(42) +key, sk = random.split(key, 2) +# NIFTy is agnostic w.r.t. the type of inputs it gets as long as they +# support core arithmetic properties. Tell NIFTy to treat our parameter +# dictionary as a vector. +samples = jft.Samples(pos=jft.Vector(lh.init(sk)), samples=None) + +delta = 1e-4 +absdelta = delta * jft.size(samples.pos) + +opt_vi = jft.OptimizeVI(lh, n_total_iterations=25) +opt_vi_st = opt_vi.init_state( + key, + # Implicit definition for the accuracy of the KL-divergence + # approximation; typically on the order of 2-12 + n_samples=lambda i: 1 if i < 2 else (2 if i < 4 else 6), + # Parametrize the conjugate gradient method at the heart of the + # sample-drawing + draw_linear_kwargs=dict( + cg_name="SL", cg_kwargs=dict(absdelta=absdelta / 10.0, maxiter=100) + ), + # Parametrize the minimizer in the nonlinear update of the samples + nonlinearly_update_kwargs=dict( + minimize_kwargs=dict( + name="SN", xtol=delta, cg_kwargs=dict(name=None), maxiter=5 + ) + ), + # Parametrize the minimization of the KL-divergence cost potential + kl_kwargs=dict(minimize_kwargs=dict(name="M", xtol=delta, maxiter=35)), + sample_mode="nonlinear_resample", +) +for i in range(opt_vi.n_total_iterations): + print(f"Iteration {i+1:04d}") + # Continuously update the samples of the approximate posterior + # distribution + samples, opt_vi_st = opt_vi.update(samples, opt_vi_st) + print(opt_vi.get_status_message(samples, opt_vi_st)) + +

Data (left), posterior mean (middle), and posterior + uncertainty (right) for a simple toy + example.

+ +
+

[fig:minimal_reconstruction_data_mean_std] + shows an exemplary posterior reconstruction employing the above + model. The posterior mean agrees with the data but removes noisy + structures. The posterior standard deviation is approximately equal + to typical differences between the posterior mean and the data.

+
+ + Performance of <monospace>NIFTy.re</monospace> compared to + <monospace>NIFTy</monospace> +

We test the performance of NIFTy.re + against NIFTy for the simple yet + representative model from above. To assess the performance, we + compare the time required to apply + + Mp:=Fp+𝟙 + to random input with + + Fp + denoting the Fisher metric of the overall likelihood at position + + + p + and + + 𝟙 + the identity matrix. Within NIFTy.re, the + Fisher metric of the overall likelihood is decomposed into + + + Jf,pN1Jf,p + with + + Jf,p + the implicit Jacobian of the forward model + + + f + at + + p + and + + N1 + the Fisher-metric of the Poisson likelihood. We choose to benchmark + + + Mp + as a typical VI minimization in NIFTy.re and + NIFTy is dominated by calls to this + function.

+ +

Median evaluation time of applying the Fisher metric + plus the identity metric to random input for + NIFTy.re and NIFTy + on the CPU (one and eight core(s) of an Intel Xeon Platinum 8358 + CPU clocked at 2.60G Hz) and the GPU (A100 SXM4 80 GB HBM2). The + quantile range from the 16%- to the 84%-quantile is obscured by + the marker + symbols.

+ +
+

[fig:benchmark_nthreads=1+8_devices=cpu+gpu] + shows the median evaluation time in NIFTy of + applying + + Mp + to new, random tangent positions and the evaluation time in + NIFTy.re of building + + + Mp + and applying it to new, random tangent positions for exponentially + larger models. The 16%-quantiles and the 84%-quantiles of the + timings are obscured by the marker symbols. We chose to exclude the + build time of + + Mp + in NIFTy from the comparison, putting + NIFTy at an advantage, as its automatic + differentiation is built around calls to + + + Mp + with + + p + rarely varying. We ran the benchmark on one CPU core, eight CPU + cores, and on a GPU on a compute-node with an Intel Xeon Platinum + 8358 CPU clocked at 2.60G Hz and an NVIDIA A100 SXM4 80 GB HBM2 GPU. + The benchmark used jax==0.4.23 and + jaxlib==0.4.23+cuda12.cudnn89. We vary the + size of the model by increasing the size of the two-dimensional + square image grid.

+

For small image sizes, NIFTy.re on the CPU + is about one order of magnitude faster than + NIFTy. Both reach about the same performance + at an image size of roughly 15,000 pixels and continue to perform + roughly the same for larger image sizes. The performance increases + by a factor of three to four with eight cores for + NIFTy.re and NIFTy, + although NIFTy.re is slightly better at using + the additional cores. On the GPU, NIFTy.re is + consistently about one to two orders of magnitude faster than + NIFTy for images larger than 100,000 + pixels.

+

We believe the performance benefits of + NIFTy.re on the CPU for small models stem + from the reduced Python overhead by just-in-time compiling + computations. At image sizes larger than roughly 15,000 pixels, both + evaluation times are dominated by the fast Fourier transform and are + hence roughly the same as both use the same underlying + implementation + (Reinecke, + 2024). Models in NIFTy.re and + NIFTy are often well aligned with GPU + programming models and thus consistently perform well on the GPU. + Modeling components such as the new GP models implemented in + NIFTy.re are even better aligned with GPU + programming paradigms and yield even higher performance gains + (Edenhofer + et al., 2022).

+
+
+ + Conclusion +

NIFTy.re implements the core GP and VI + machinery of the Bayesian imaging package NIFTy + in JAX. The rewrite moves much of the heavy-lifting from home-grown + solutions to JAX, and we envision significant gains in maintainability + of NIFTy.re and a faster development cycle + moving forward. The rewrite accelerates typical models written in + NIFTy by one to two orders of magnitude, lays + the foundation for new types of inference machineries by enabling + higher order derivatives via JAX, and enables the interoperability of + NIFTy’s VI and GP methods with the JAX machine + learning ecosystem.

+
+ + Acknowledgements +

Gordian Edenhofer acknowledges support from the German Academic + Scholarship Foundation in the form of a PhD scholarship + (“Promotionsstipendium der Studienstiftung des Deutschen Volkes”). + Philipp Frank acknowledges funding through the German Federal Ministry + of Education and Research for the project “ErUM-IFT: + Informationsfeldtheorie für Experimente an Großforschungsanlagen” + (Förderkennzeichen: 05D23EO1). Jakob Roth acknowledges financial + support by the German Federal Ministry of Education and Research + (BMBF) under grant 05A20W01 (Verbundprojekt D-MeerKAT). Matteo + Guardiani, Vincent Eberle, and Margret Westerkamp acknowledge + financial support from the “Deutsches Zentrum für Luft- und Raumfahrt + e.V.” (DLR) through the project Universal Bayesian Imaging Kit (UBIK, + Förderkennzeichen 50OO2103). Lukas Scheel-Platz acknowledges funding + from the European Research Council (ERC) under the European Union’s + Horizon Europe research and innovation programme under grant agreement + No 101041936 (EchoLux).

+
+ + + + + + + + ArrasPhilipp + FrankPhilipp + LeikeReimar + WestermannRüdiger + EnßlinTorsten A. + + Unified radio interferometric calibration and imaging with joint uncertainty quantification + Astronomy & Astrophysics + 201907 + 627 + https://arxiv.org/abs/1903.11169 + 10.1051/0004-6361/201935555 + A134 + + + + + + + ArrasPhilipp + BaltacMihai + EnsslinTorsten A. + FrankPhilipp + HutschenreuterSebastian + KnollmuellerJakob + LeikeReimar + NewrzellaMax-Niklas + PlatzLukas + ReineckeMartin + StadlerJulia + + NIFTy5: Numerical Information Field Theory v5 + Astrophysics Source Code Library, record ascl:1903.008 + 201903 + + + + + + ArrasPhilipp + FrankPhilipp + HaimPhilipp + KnollmüllerJakob + LeikeReimar H. + ReineckeMartin + EnßlinTorsten A. + + Variable structures in M87* from space, time and frequency resolved interferometry + Nature Astronomy + 202201 + 6 + https://arxiv.org/abs/2002.05218 + 10.1038/s41550-021-01548-0 + 259 + 269 + + + + + + BinghamEli + ChenJonathan P. + JankowiakMartin + ObermeyerFritz + PradhanNeeraj + KaraletsosTheofanis + SinghRohit + SzerlipPaul A. + HorsfallPaul + GoodmanNoah D. + + Pyro: Deep universal probabilistic programming + Journal of Machine Learning Research + 2019 + 20 + http://jmlr.org/papers/v20/18-403.html + 28:1 + 28:6 + + + + + + CabezasLaoAlberto + LoufRémi + + Blackjax: A sampling library for JAX + 2023 + http://github.com/blackjax-devs/blackjax + + + + + + BlondelMathieu + BerthetQuentin + CuturiMarco + FrostigRoy + HoyerStephan + Llinares-LopezFelipe + PedregosaFabian + VertJean-Philippe + + Efficient and modular implicit differentiation + + KoyejoS. + MohamedS. + AgarwalA. + BelgraveD. + ChoK. + OhA. + + Curran Associates, Inc. + 2022 + 35 + https://proceedings.neurips.cc/paper_files/paper/2022/file/228b9279ecf9bbafe582406850c57115-Paper-Conference.pdf + 5230 + 5242 + + + + + + CarpenterBob + GelmanAndrew + HoffmanMatthew D. + LeeDaniel + GoodrichBen + BetancourtMichael + BrubakerMarcus + GuoJiqiang + LiPeter + RiddellAllen + + Stan: A probabilistic programming language + Journal of Statistical Software + 2017 + 76 + 1 + https://www.jstatsoft.org/index.php/jss/article/view/v076i01 + 10.18637/jss.v076.i01 + 1 + 32 + + + + + + DeepMind + BabuschkinIgor + BaumliKate + BellAlison + BhupatirajuSurya + BruceJake + BuchlovskyPeter + BuddenDavid + CaiTrevor + ClarkAidan + DanihelkaIvo + DedieuAntoine + FantacciClaudio + GodwinJonathan + JonesChris + HemsleyRoss + HenniganTom + HesselMatteo + HouShaobo + KapturowskiSteven + KeckThomas + KemaevIurii + KingMichael + KuneschMarkus + MartensLena + MerzicHamza + MikulikVladimir + NormanTamara + PapamakariosGeorge + QuanJohn + RingRoman + RuizFrancisco + SanchezAlvaro + SartranLaurent + SchneiderRosalia + SezenerEren + SpencerStephen + SrinivasanSrivatsan + StanojevićMiloš + StokowiecWojciech + WangLuyu + ZhouGuangyao + ViolaFabio + + The DeepMind JAX Ecosystem + 2020 + http://github.com/google-deepmind + + + + + + ReineckeMartin + + DUCC: Distinctly useful code collection + 2024 + https://gitlab.mpcdf.mpg.de/mtr/ducc + + + + + + EberleVincent + FrankPhilipp + StadlerJulia + StreitSilvan + EnßlinTorsten + + Butterfly Transforms for Efficient Representation of Spatially Variant Point Spread Functions in Bayesian Imaging + Entropy + 202304 + 25 + 4 + 10.3390/e25040652 + 652 + + + + + + + EberleVincent + FrankPhilipp + StadlerJulia + StreitSilvan + EnßlinTorsten + + Efficient representations of spatially variant point spread functions with butterfly transforms in bayesian imaging algorithms + Physical Sciences Forum + 2022 + 5 + 1 + 2673-9984 + https://www.mdpi.com/2673-9984/5/1/33 + 10.3390/psf2022005033 + + + + + + EdenhoferGordian + LeikeReimar H. + FrankPhilipp + EnßlinTorsten A. + + Sparse kernel gaussian processes through iterative charted refinement (ICR) + arXiv + 2022 + https://arxiv.org/abs/2206.10634 + 10.48550/ARXIV.2206.10634 + + + + + + EdenhoferGordian + ZuckerCatherine + FrankPhilipp + SaydjariAndrew K. + SpeagleJoshua S. + FinkbeinerDouglas + EnßlinTorsten A. + + A parsec-scale Galactic 3D dust map out to 1.25 kpc from the Sun + Astronomy & Astrophysics + 202405 + 685 + https://arxiv.org/abs/2308.01295 + 10.1051/0004-6361/202347628 + A82 + + + + + + + Foreman-MackeyDaniel + HoggDavid W. + LangDustin + GoodmanJonathan + + emcee: The MCMC Hammer + Publications of the Astronomical Society of the Pacific + 201303 + 125 + 925 + https://arxiv.org/abs/1202.3665 + 10.1086/670067 + 306 + + + + + + + Foreman-MackeyDaniel + YuWeixiang + YadavSachin + BeckerMcCoy Reynolds + CaplarNeven + HuppenkothenDaniela + KillesteinThomas + TronsgaardRené + RashidTheo + SchmerlerSteve + + dfm/tinygp: The tiniest of Gaussian Process libraries + Zenodo + 202401 + https://doi.org/10.5281/zenodo.10463641 + 10.5281/zenodo.10463641 + + + + + + FrankPhilipp + SteiningerTheo + EnßlinTorsten A. + + Field dynamics inference via spectral density estimation + Physical Review E + 201711 + 96 + 5 + https://arxiv.org/abs/1708.05250 + 10.1103/PhysRevE.96.052104 + 052104 + + + + + + + FrankPhilipp + LeikeReimar H. + EnßlinTorsten A. + + Geometric variational inference + Entropy + MDPI AG + 202107 + 23 + 7 + https://doi.org/10.3390%2Fe23070853 + 10.3390/e23070853 + 853 + + + + + + + FrankPhilipp + + Geometric variational inference and its application to bayesian imaging + Physical Sciences Forum + 2022 + 5 + 1 + 2673-9984 + https://www.mdpi.com/2673-9984/5/1/6 + 10.3390/psf2022005006 + + + + + + GuardianiMatteo + FrankPhilipp + KostićAndrija + EdenhoferGordian + RothJakob + UhlmannBerit + EnßlinTorsten + + Causal, bayesian, & non-parametric modeling of the SARS-CoV-2 viral load distribution vs. Patient’s age + PLOS ONE + Public Library of Science + 202210 + 17 + 10 + https://doi.org/10.1371/journal.pone.0275011 + 10.1371/journal.pone.0275011 + 1 + 21 + + + + + + HensmanJames + G. MatthewsAlexander G. de + GhahramaniZoubin + + Scalable variational gaussian process classification. + AISTATS + + LebanonGuy + VishwanathanS. V. N. + + JMLR.org + 2015 + 38 + http://dblp.uni-trier.de/db/conf/aistats/aistats2015.html#HensmanMG15 + + + + + + HutschenreuterS. + AndersonC. S. + BettiS. + BowerG. C. + BrownJ. -A. + BrüggenM. + CarrettiE. + ClarkeT. + CleggA. + CostaA. + CroftS. + Van EckC. + GaenslerB. M. + de GasperinF. + HaverkornM. + HealdG. + HullC. L. H. + InoueM. + Johnston-HollittM. + KaczmarekJ. + LawC. + MaY. K. + MacMahonD. + MaoS. A. + RiseleyC. + RoyS. + ShanahanR. + ShimwellT. + StilJ. + SobeyC. + O’SullivanS. P. + TasseC. + VaccaV. + VernstromT. + WilliamsP. K. G. + WrightM. + EnßlinT. A. + + The Galactic Faraday rotation sky 2020 + Astronomy & Astrophysics + 202201 + 657 + https://arxiv.org/abs/2102.01709 + 10.1051/0004-6361/202140486 + A43 + + + + + + + HutschenreuterSebastian + HaverkornMarijke + FrankPhilipp + RaychevaNergis C. + EnßlinTorsten A. + + Disentangling the Faraday rotation sky + arXiv e-prints + 202304 + https://arxiv.org/abs/2304.12350 + 10.48550/arXiv.2304.12350 + arXiv:2304.12350 + + + + + + + BradburyJames + FrostigRoy + HawkinsPeter + JohnsonMatthew James + LearyChris + MaclaurinDougal + NeculaGeorge + PaszkeAdam + VanderPlasJake + Wanderman-MilneSkye + ZhangQiao + + JAX: Composable transformations of Python+NumPy programs + 2018 + http://github.com/google/jax + + + + + + KidgerPatrick + GarciaCristian + + Equinox: Neural networks in JAX via callable PyTrees and filtered transformations + Differentiable Programming workshop at Neural Information Processing Systems 2021 + 2021 + + + + + + KnollmüllerJakob + EnßlinTorsten A. + + Metric gaussian variational inference + arXiv + 2019 + https://arxiv.org/abs/1901.11033 + 10.48550/ARXIV.1901.11033 + + + + + + KoposovSergey + SpeagleJosh + BarbaryKyle + AshtonGregory + BennettEd + BuchnerJohannes + SchefflerCarl + CookBen + TalbotColm + GuillochonJames + CubillosPatricio + RamosAndrés Asensio + JohnsonBen + LangDustin + Ilya + DartiailhMatthieu + NitzAlex + McCluskeyAndrew + ArchibaldAnne + + Joshspeagle/dynesty: v2.1.3 + Zenodo + 202310 + https://doi.org/10.5281/zenodo.8408702 + 10.5281/zenodo.8408702 + + + + + + LeikeR. H. + EnßlinT. A. + + Charting nearby dust clouds using Gaia data only + Astronomy & Astrophysics + 201911 + 631 + https://arxiv.org/abs/1901.05971 + 10.1051/0004-6361/201935093 + A32 + + + + + + + LeikeR. H. + GlatzleM. + EnßlinT. A. + + Resolving nearby dust clouds + Astronomy & Astrophysics + 202007 + 639 + https://arxiv.org/abs/2004.06732 + 10.1051/0004-6361/202038169 + A138 + + + + + + + LeikeR. H. + EdenhoferG. + KnollmüllerJ. + AligC. + FrankP. + EnßlinT. A. + + The Galactic 3D large-scale dust distribution via Gaussian process regression on spherical coordinates + arXiv e-prints + 202204 + https://arxiv.org/abs/2204.11715 + 10.48550/arXiv.2204.11715 + arXiv:2204.11715 + + + + + + + De G. MatthewsAlexander G. + Van Der WilkMark + NicksonTom + FujiiKeisuke + BoukouvalasAlexis + León-VillagráPablo + GhahramaniZoubin + HensmanJames + + GPflow: A gaussian process library using tensorflow + Journal of Machine Learning Research + JMLR.org + 201701 + 18 + 1 + 1532-4435 + 1299 + 1304 + + + + + + MertschP. + PhanV. H. M. + + Bayesian inference of three-dimensional gas maps. II. Galactic HI + Astronomy & Astrophysics + 202303 + 671 + https://arxiv.org/abs/2202.02341 + 10.1051/0004-6361/202243326 + A54 + + + + + + + PhanDu + PradhanNeeraj + JankowiakMartin + + Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro + arXiv e-prints + 201912 + https://arxiv.org/abs/1912.11554 + 10.48550/arXiv.1912.11554 + arXiv:1912.11554 + + + + + + + RezendeDanilo Jimenez + MohamedShakir + + Variational inference with normalizing flows + Proceedings of the 32nd international conference on international conference on machine learning - volume 37 + JMLR.org + Lille, France + 2015 + http://proceedings.mlr.press/v37/rezende15.html + 1530 + 1538 + + + + + + RothJakob + ArrasPhilipp + ReineckeMartin + PerleyRichard A. + WestermannRüdiger + EnßlinTorsten A. + + Bayesian radio interferometric imaging with direction-dependent calibration + Astronomy & Astrophysics + 202310 + 678 + https://arxiv.org/abs/2305.05489 + 10.1051/0004-6361/202346851 + A177 + + + + + + + RothJ. + Li CausiG. + TestaV. + ArrasP. + EnsslinT. A. + + Fast-cadence High-contrast Imaging with Information Field Theory + The Astronomical Journal + 202303 + 165 + 3 + https://arxiv.org/abs/2212.07714 + 10.3847/1538-3881/acabc1 + 86 + + + + + + + SalvatierJohn + WieckiThomas V. + FonnesbeckChristopher + + Probabilistic programming in python using PyMC3 + PeerJ Computer Science + 201604 + 2 + 2376-5992 + https://doi.org/10.7717/peerj-cs.55 + 10.7717/peerj-cs.55 + e55 + + + + + + + Scheel-PlatzL. I. + KnollmüllerJ. + ArrasP. + FrankP. + ReineckeM. + JüstelD. + EnßlinT. A. + + Multicomponent imaging of the Fermi gamma-ray sky in the spatio-spectral domain + Astronomy & Astrophysics + 202312 + 680 + https://arxiv.org/abs/2204.09360 + 10.1051/0004-6361/202243819 + A2 + + + + + + + SeligM. + BellM. R. + JunklewitzH. + OppermannN. + ReineckeM. + GreinerM. + PachajoaC. + EnßlinT. A. + + NIFTY - Numerical Information Field Theory. A versatile PYTHON library for signal inference + Astronomy & Astrophysics + 201306 + 554 + https://arxiv.org/abs/1301.4499 + 10.1051/0004-6361/201321236 + A26 + + + + + + + AmbikasaranSivaram + Foreman-MackeyDaniel + GreengardLeslie + HoggDavid W. + O’NeilMichael + + Fast Direct Methods for Gaussian Processes + IEEE Transactions on Pattern Analysis and Machine Intelligence + 201506 + 38 + https://arxiv.org/abs/1403.6015 + 10.1109/TPAMI.2015.2448083 + 252 + + + + + + + SpeagleJoshua S. + + DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences + Monthly Notices of the RAS + 202004 + 493 + 3 + https://arxiv.org/abs/1904.02180 + 10.1093/mnras/staa278 + 3132 + 3158 + + + + + + SteiningerTheo + DixitJait + FrankPhilipp + GreinerMaksim + HutschenreuterSebastian + KnollmüllerJakob + LeikeReimar H. + PorqueresNatalia + PumpeDaniel + ReineckeMartin + ŠramlMatevž + VaradyCsongor + EnßlinTorsten A. + + NIFTy 3 - Numerical Information Field Theory: A Python Framework for Multicomponent Signal Inference on HPC Clusters + Annalen der Physik + 201903 + 531 + 3 + 10.1002/andp.201800290 + 1800290 + + + + + + + TsourosAlexandros + EdenhoferGordian + EnßlinTorsten + MastorakisMichalis + PavlidouVasiliki + + Reconstructing Galactic magnetic fields from local measurements for backtracking ultra-high-energy cosmic rays + Astronomy & Astrophysics + 202401 + 681 + https://arxiv.org/abs/2303.10099 + 10.1051/0004-6361/202346423 + A111 + + + + + + + WellingC. + FrankP. + EnßlinT. + NellesA. + + Reconstructing non-repeating radio pulses with Information Field Theory + Journal of Cosmology and Astroparticle Physics + 202104 + 2021 + 4 + https://arxiv.org/abs/2102.00258 + 10.1088/1475-7516/2021/04/071 + 071 + + + + + + + WesterkampMargret + EberleVincent + GuardianiMatteo + FrankPhilipp + PlatzLukas + ArrasPhilipp + KnollmüllerJakob + StadlerJulia + EnßlinTorsten + + First spatio-spectral Bayesian imaging of SN1006 in X-ray + arXiv e-prints + 202308 + https://arxiv.org/abs/2308.09176 + 10.48550/arXiv.2308.09176 + arXiv:2308.09176 + + + + + +
diff --git a/joss.06593/paper.jats/benchmark_nthreads=1+8_devices=cpu+gpu.png b/joss.06593/paper.jats/benchmark_nthreads=1+8_devices=cpu+gpu.png new file mode 100644 index 0000000000..38eeab0997 Binary files /dev/null and b/joss.06593/paper.jats/benchmark_nthreads=1+8_devices=cpu+gpu.png differ diff --git a/joss.06593/paper.jats/minimal_reconstruction_data_mean_std.png b/joss.06593/paper.jats/minimal_reconstruction_data_mean_std.png new file mode 100644 index 0000000000..bd90158bd9 Binary files /dev/null and b/joss.06593/paper.jats/minimal_reconstruction_data_mean_std.png differ