diff --git a/joss.04182/10.21105.joss.04182.crossref.xml b/joss.04182/10.21105.joss.04182.crossref.xml
new file mode 100644
index 0000000000..186b31bc53
--- /dev/null
+++ b/joss.04182/10.21105.joss.04182.crossref.xml
@@ -0,0 +1,480 @@
+
+
+
+ 20220530T162257-94a8194942fe7f6683f29c8fe8d39e01b8455789
+ 20220530162257
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org/
+
+
+
+
+ 05
+ 2022
+
+
+ 7
+
+ 73
+
+
+
+ E2EDNA 2.0: Python Pipeline for Simulating DNA Aptamers
+with Ligands
+
+
+
+ Michael
+ Kilgour
+ https://orcid.org/0000-0001-6557-3297
+
+
+ Tao
+ Liu
+ https://orcid.org/0000-0002-1082-5570
+
+
+ Ilya S.
+ Dementyev
+ https://orcid.org/0000-0001-7171-1078
+
+
+ Lena
+ Simine
+ https://orcid.org/0000-0002-8188-0550
+
+
+
+ 05
+ 30
+ 2022
+
+
+ 4182
+
+
+ 10.21105/joss.04182
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.6546661
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/4182
+
+
+
+ 10.21105/joss.04182
+ https://joss.theoj.org/papers/10.21105/joss.04182
+
+
+ https://joss.theoj.org/papers/10.21105/joss.04182.pdf
+
+
+
+
+
+ E2EDNA: Simulation Protocol for DNA Aptamers
+with Ligands
+ Kilgour
+ Journal of Chemical Information and
+Modeling
+ 9
+ 61
+ 10.1021/acs.jcim.1c00696
+ 1549-9596
+ 2021
+ Kilgour, M., Liu, T., Walker, B. D.,
+Ren, P., & Simine, L. (2021). E2EDNA: Simulation Protocol for DNA
+Aptamers with Ligands. Journal of Chemical Information and Modeling,
+61(9), 4139–4144.
+https://doi.org/10.1021/acs.jcim.1c00696
+
+
+ Aptamer Therapeutics in Cancer: Current and
+Future
+ Morita
+ Cancers
+ 3
+ 10
+ 10.3390/cancers10030080
+ 2072-6694
+ 2018
+ Morita, Y., Leslie, M., Kameyama, H.,
+Volk, D., & Tanaka, T. (2018). Aptamer Therapeutics in Cancer:
+Current and Future. Cancers, 10(3), 80.
+https://doi.org/10.3390/cancers10030080
+
+
+ Real-time measurement of adenosine and ATP
+release in the central nervous system
+ Dale
+ Purinergic Signalling
+ 1
+ 17
+ 10.1007/s11302-020-09733-y
+ 1573-9538
+ 2021
+ Dale, N. (2021). Real-time
+measurement of adenosine and ATP release in the central nervous system.
+Purinergic Signalling, 17(1), 109–115.
+https://doi.org/10.1007/s11302-020-09733-y
+
+
+ Challenges and Opportunities for Nucleic Acid
+Therapeutics
+ Corey
+ Nucleic Acid Therapeutics
+ 10.1089/nat.2021.0085
+ 2159-3337
+ 2021
+ Corey, D. R., Damha, M. J., &
+Manoharan, M. (2021). Challenges and Opportunities for Nucleic Acid
+Therapeutics. Nucleic Acid Therapeutics, nat.2021.0085.
+https://doi.org/10.1089/nat.2021.0085
+
+
+ Nucleic Acid Aptamers for Molecular Therapy
+of Epilepsy and Blood-Brain Barrier Damages
+ Zamay
+ Molecular Therapy - Nucleic
+Acids
+ 19
+ 10.1016/j.omtn.2019.10.042
+ 2020
+ Zamay, T. N., Zamay, G. S., Shnayder,
+N. A., Dmitrenko, D. V., Zamay, S. S., Yushchenko, V., Kolovskaya, O.
+S., Susevski, V., Berezovski, M. V., & Kichkailo, A. S. (2020).
+Nucleic Acid Aptamers for Molecular Therapy of Epilepsy and Blood-Brain
+Barrier Damages. Molecular Therapy - Nucleic Acids, 19, 157–167.
+https://doi.org/10.1016/j.omtn.2019.10.042
+
+
+ Electrochemical Aptamer-Based Sensors: A
+Platform Approach to High-Frequency Molecular Monitoring In Situ in the
+Living Body
+ Dauphin-Ducharme
+ Biomedical Engineering
+Technologies
+ 2393
+ 10.1007/978-1-0716-1803-5_25
+ 978-1-07-161803-5
+ 2022
+ Dauphin-Ducharme, P., Ploense, K. L.,
+Arroyo-Currás, N., Kippin, T. E., & Plaxco, K. W. (2022).
+Electrochemical Aptamer-Based Sensors: A Platform Approach to
+High-Frequency Molecular Monitoring In Situ in the Living Body. In
+Biomedical Engineering Technologies (Vol. 2393, pp. 479–492). Springer
+US. https://doi.org/10.1007/978-1-0716-1803-5_25
+
+
+ Artificially Expanded Genetic Information
+Systems for New Aptamer Technologies
+ Biondi
+ Biomedicines
+ 2
+ 6
+ 10.3390/biomedicines6020053
+ 2227-9059
+ 2018
+ Biondi, E., & Benner, S. (2018).
+Artificially Expanded Genetic Information Systems for New Aptamer
+Technologies. Biomedicines, 6(2), 53.
+https://doi.org/10.3390/biomedicines6020053
+
+
+ NUPACK: Analysis and design of nucleic acid
+systems
+ Zadeh
+ Journal of Computational
+Chemistry
+ 1
+ 32
+ 10.1002/jcc.21596
+ 2011
+ Zadeh, J. N., Steenberg, C. D., Bois,
+J. S., Wolfe, B. R., Pierce, M. B., Khan, A. R., Dirks, R. M., &
+Pierce, N. A. (2011). NUPACK: Analysis and design of nucleic acid
+systems. Journal of Computational Chemistry, 32(1), 170–173.
+https://doi.org/10.1002/jcc.21596
+
+
+ OpenMM 7: Rapid development of high
+performance algorithms for molecular dynamics
+ Eastman
+ PLOS Computational Biology
+ 7
+ 13
+ 10.1371/journal.pcbi.1005659
+ 1553-7358
+ 2017
+ Eastman, P., Swails, J., Chodera, J.
+D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L.-P., Simmonett,
+A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R.,
+& Pande, V. S. (2017). OpenMM 7: Rapid development of high
+performance algorithms for molecular dynamics. PLOS Computational
+Biology, 13(7), e1005659.
+https://doi.org/10.1371/journal.pcbi.1005659
+
+
+ LightDock: A new multi-scale approach to
+protein–protein docking
+ Jiménez-García
+ Bioinformatics
+ 1
+ 34
+ 10.1093/bioinformatics/btx555
+ 1367-4803
+ 2018
+ Jiménez-García, B., Roel-Touris, J.,
+Romero-Durana, M., Vidal, M., Jiménez-González, D., &
+Fernández-Recio, J. (2018). LightDock: A new multi-scale approach to
+protein–protein docking. Bioinformatics, 34(1), 49–55.
+https://doi.org/10.1093/bioinformatics/btx555
+
+
+ LightDock goes
+information-driven
+ Roel-Touris
+ Bioinformatics
+ 3
+ 36
+ 10.1093/bioinformatics/btz642
+ 1367-4803
+ 2020
+ Roel-Touris, J., Bonvin, A. M. J. J.,
+& Jiménez-García, B. (2020). LightDock goes information-driven.
+Bioinformatics, 36(3), 950–952.
+https://doi.org/10.1093/bioinformatics/btz642
+
+
+ Fast Flexible Modeling of RNA Structure Using
+Internal Coordinates
+ Flores
+ IEEE/ACM Transactions on Computational
+Biology and Bioinformatics
+ 5
+ 8
+ 10.1109/TCBB.2010.104
+ 1545-5963
+ 2011
+ Flores, S. C., Sherman, M. A., Bruns,
+C. M., Eastman, P., & Altman, R. B. (2011). Fast Flexible Modeling
+of RNA Structure Using Internal Coordinates. IEEE/ACM Transactions on
+Computational Biology and Bioinformatics, 8(5), 1247–1257.
+https://doi.org/10.1109/TCBB.2010.104
+
+
+ APTANI: A computational tool to select
+aptamers through sequence-structure motif analysis of HT-SELEX
+data
+ Caroli
+ Bioinformatics
+ 2
+ 32
+ 10.1093/bioinformatics/btv545
+ 1367-4803
+ 2016
+ Caroli, J., Taccioli, C., De La
+Fuente, A., Serafini, P., & Bicciato, S. (2016). APTANI: A
+computational tool to select aptamers through sequence-structure motif
+analysis of HT-SELEX data. Bioinformatics, 32(2), 161–164.
+https://doi.org/10.1093/bioinformatics/btv545
+
+
+ APTANI2: Update of aptamer selection through
+sequence-structure analysis
+ Caroli
+ Bioinformatics
+ 7
+ 36
+ 10.1093/bioinformatics/btz897
+ 1367-4803
+ 2020
+ Caroli, J., Forcato, M., &
+Bicciato, S. (2020). APTANI2: Update of aptamer selection through
+sequence-structure analysis. Bioinformatics, 36(7), 2266–2268.
+https://doi.org/10.1093/bioinformatics/btz897
+
+
+ G-quadruplex DNA Aptamers and their Ligands:
+Structure, Function and Application
+ Tucker
+ Current Pharmaceutical Design
+ 14
+ 18
+ 10.2174/138161212799958477
+ 2012
+ Tucker, W. O., Shum, K. T., &
+Tanner, J. A. (2012). G-quadruplex DNA Aptamers and their Ligands:
+Structure, Function and Application. Current Pharmaceutical Design,
+18(14), 2014–2026.
+https://doi.org/10.2174/138161212799958477
+
+
+ Aptamers as targeted therapeutics: Current
+potential and challenges
+ Zhou
+ Nature Reviews Drug Discovery
+ 3
+ 16
+ 10.1038/nrd.2016.199
+ 1474-1776
+ 2017
+ Zhou, J., & Rossi, J. (2017).
+Aptamers as targeted therapeutics: Current potential and challenges.
+Nature Reviews Drug Discovery, 16(3), 181–202.
+https://doi.org/10.1038/nrd.2016.199
+
+
+ Aptamers and SELEX: Tools for the Development
+of Transformative Molecular Recognition Technology
+ McKeague
+ Aptamers and Synthetic
+Antibodies
+ 1
+ 1
+ 2014
+ McKeague, M., & DeRosa, M. C.
+(2014). Aptamers and SELEX: Tools for the Development of Transformative
+Molecular Recognition Technology. Aptamers and Synthetic Antibodies,
+1(1), 12–16.
+
+
+ Systematic Evolution of Ligands by
+Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA
+Polymerase
+ Tuerk
+ Science
+ 4968
+ 249
+ 10.1126/science.2200121
+ 0036-8075
+ 1990
+ Tuerk, C., & Gold, L. (1990).
+Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands
+to Bacteriophage T4 DNA Polymerase. Science, 249(4968), 505–510.
+https://doi.org/10.1126/science.2200121
+
+
+ A chronocoulometric aptamer sensor for
+adenosine monophosphate
+ Shen
+ Chemical Communications
+ 21
+ 10.1039/b618909a
+ 1359-7345
+ 2007
+ Shen, L., Chen, Z., Li, Y., Jing, P.,
+Xie, S., He, S., He, P., & Shao, Y. (2007). A chronocoulometric
+aptamer sensor for adenosine monophosphate. Chemical Communications, 21,
+2169. https://doi.org/10.1039/b618909a
+
+
+ Aptamer-Based Sensor Arrays for the Detection
+and Quantitation of Proteins
+ Kirby
+ Analytical Chemistry
+ 14
+ 76
+ 10.1021/ac049858n
+ 0003-2700
+ 2004
+ Kirby, R., Cho, E. J., Gehrke, B.,
+Bayer, T., Park, Y. S., Neikirk, D. P., McDevitt, J. T., &
+Ellington, A. D. (2004). Aptamer-Based Sensor Arrays for the Detection
+and Quantitation of Proteins. Analytical Chemistry, 76(14), 4066–4075.
+https://doi.org/10.1021/ac049858n
+
+
+ Aptamer-Based Biosensors for Environmental
+Monitoring
+ McConnell
+ Frontiers in Chemistry
+ 8
+ 10.3389/fchem.2020.00434
+ 2296-2646
+ 2020
+ McConnell, E. M., Nguyen, J., &
+Li, Y. (2020). Aptamer-Based Biosensors for Environmental Monitoring.
+Frontiers in Chemistry, 8, 434.
+https://doi.org/10.3389/fchem.2020.00434
+
+
+ Rapid and Label-Free Strategy to Isolate
+Aptamers for Metal Ions
+ Qu
+ ACS Nano
+ 8
+ 10
+ 10.1021/acsnano.6b02558
+ 1936-0851
+ 2016
+ Qu, H., Csordas, A. T., Wang, J., Oh,
+S. S., Eisenstein, M. S., & Soh, H. T. (2016). Rapid and Label-Free
+Strategy to Isolate Aptamers for Metal Ions. ACS Nano, 10(8), 7558–7565.
+https://doi.org/10.1021/acsnano.6b02558
+
+
+ Aptamer-Based Biosensors for Antibiotic
+Detection: A Review
+ Mehlhorn
+ Biosensors
+ 2
+ 8
+ 10.3390/bios8020054
+ 2079-6374
+ 2018
+ Mehlhorn, A., Rahimi, P., &
+Joseph, Y. (2018). Aptamer-Based Biosensors for Antibiotic Detection: A
+Review. Biosensors, 8(2), 54.
+https://doi.org/10.3390/bios8020054
+
+
+ Quantitative detection of neurotransmitter
+using aptamer: From diagnosis to therapeutics
+ Sinha
+ Journal of Biosciences
+ 1
+ 45
+ 10.1007/s12038-020-0017-x
+ 0250-5991
+ 2020
+ Sinha, K., & Das Mukhopadhyay, C.
+(2020). Quantitative detection of neurotransmitter using aptamer: From
+diagnosis to therapeutics. Journal of Biosciences, 45(1), 44.
+https://doi.org/10.1007/s12038-020-0017-x
+
+
+
+
+
+
diff --git a/joss.04182/10.21105.joss.04182.jats b/joss.04182/10.21105.joss.04182.jats
new file mode 100644
index 0000000000..b30916daa3
--- /dev/null
+++ b/joss.04182/10.21105.joss.04182.jats
@@ -0,0 +1,822 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+4182
+10.21105/joss.04182
+
+E2EDNA 2.0: Python Pipeline for Simulating DNA Aptamers
+with Ligands
+
+
+
+0000-0001-6557-3297
+
+Kilgour
+Michael
+
+
+
+
+0000-0002-1082-5570
+
+Liu
+Tao
+
+
+
+
+0000-0001-7171-1078
+
+Dementyev
+Ilya S.
+
+
+
+
+0000-0002-8188-0550
+
+Simine
+Lena
+
+
+*
+
+
+
+Department of Chemistry, McGill University, Montreal,
+Quebec, Canada
+
+
+
+
+* E-mail:
+
+
+31
+1
+2022
+
+7
+73
+4182
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Python
+simulation pipeline
+DNA aptamers
+
+
+
+
+
+ Summary
+
DNA aptamers are short sequences of single-stranded DNA with
+ untapped potential in molecular medicine, drug design, and materials
+ design due to their strong and selective and most importantly tunable
+ binding affinity to target molecules
+ (Tucker
+ et al., 2012;
+ Zhou
+ & Rossi, 2017). For instance, DNA aptamers can be used as
+ therapeutics
+ (Corey
+ et al., 2021) for a wide range of diseases such as epilepsy
+ (Zamay
+ et al., 2020) and cancer
+ (Morita
+ et al., 2018). They can also be used to detect a wide variety
+ of molecular ligands, including antibiotics
+ (Mehlhorn
+ et al., 2018), neurotransmitters
+ (Sinha
+ & Das Mukhopadhyay, 2020), metals
+ (Qu
+ et al., 2016), proteins
+ (Kirby
+ et al., 2004), nucleotides
+ (Shen
+ et al., 2007) and metabolites
+ (Dale,
+ 2021;
+ Dauphin-Ducharme
+ et al., 2022) in real time, even in harsh environments
+ (McConnell
+ et al., 2020).
+
We present E2EDNA 2.0: End-2-End DNA 2.0, a python simulation
+ pipeline which offers a unified and automated solution to
+ computational modeling of DNA aptamers with molecular ligands. It is
+ broadly aimed at researchers developing therapeutics and sensors based
+ on DNA aptamers who require detailed atomistic information on the
+ behavior of aptamers and ligands in realistic media. Similar to its
+ predecessor E2EDNA
+ (Kilgour
+ et al., 2021), E2EDNA 2.0 predicts DNA aptamers’ secondary and
+ tertiary structures, and if a ligand is present, the configuration of
+ the solvated aptamer-ligand complex.
+
+
+ Statement of Need
+
With E2EDNA 2.0 our goal is to create a python-interfacing
+ simulation package for single-stranded DNA with small ligands that is
+ easy to install and use in python-based workflows. The pipeline is
+ automated, yet flexible, taking us from DNA aptamer sequence to folded
+ aptamer, and aptamer-ligand complex. Currently, available software
+ packages designed for computationally studying DNA aptamers
+ predominantly focus on partial feature analyses of RNA and DNA
+ aptamers. For example, APTANI
+ (Caroli
+ et al., 2016) and APTANI2
+ (Caroli
+ et al., 2020), commonly used by the aptamer community, select
+ potentially relevant aptamers from SELEX (Systematic Evolution of
+ Ligands by EXponential
+ enrichment)(McKeague
+ & DeRosa, 2014;
+ Tuerk
+ & Gold, 1990) experimental data sets through a
+ sequence-structure analysis, and AEGIS, a platform equipped with a
+ generative deep learning model to propose novel aptamer sequences
+ (Biondi
+ & Benner, 2018). These approaches are aimed at fast
+ black-box analysis of large numbers of sequences. A detailed analysis
+ of a small number of high-promise candidate sequences is often
+ required but no automated and easy-to-use simulation package exists in
+ the computational space aside from E2EDNA
+ (Kilgour
+ et al., 2021) and E2EDNA 2.0, with the latter preferable for
+ ease of installation and user-friendly implementations of eight modes
+ of simulation.
+
The gap that the E2EDNA family of programs addresses is the absence
+ of a non-black-box one-stop-shop aptamer simulation package, which is
+ capable of providing in silico predictions of 2D structure, 3D
+ structure, and aptamer-ligand binding simulation while keeping
+ methodology flexible and analysis open-ended. E2EDNA 2.0 achieves this
+ in two key ways: a python-interfacing implementation which makes
+ installation and access easier for users than the original E2EDNA
+ package, and the automation of the dozens of tasks required in setting
+ up, running, and interpreting atomistic aptamer-ligand
+ simulations.
+
+
Schematic workflow of E2EDNA 2.0
+ pipeline.
+
+
+
+
+ Components and Features
+
As shown in
+ Figure 1,
+ the complete simulation pipeline in E2EDNA 2.0 consists of the
+ following main steps: 1. Secondary structure prediction, 2. Tertiary
+ structure prediction, 3. Molecular dynamics simulation, and 4.
+ Aptamer-ligand docking. The key inputs into E2EDNA 2.0 are the DNA
+ sequence in the FASTA format, the structure of the ligand in the pdb
+ format (optional), and the choice of simulation mode. The output
+ includes secondary structure in dot-bracket notation, tertiary
+ structures in pdb format of free aptamer and aptamer-ligand complex
+ (optional), and simulation trajectories in the dcd format. It is worth
+ noting that there are other parameters besides “key inputs” that can
+ be customized, such as solvent ionic strength. Detailed analysis of
+ the generated trajectories is not performed by E2EDNA 2.0, though is
+ straightforward to set up for a particular workflow using built-in or
+ user-specified functions.
+
Next we briefly discuss the external software packages engaged in
+ the E2EDNA 2.0 pipeline. For developers we point out that the pipeline
+ is modular and any of these packages may be drop-in replaced with any
+ equivalent or competing software. The first module, NUPACK
+ (Zadeh
+ et al., 2011), generates a predicted secondary structure given
+ DNA FASTA sequence, temperature, and ionic strength. It can output
+ explicit probability of observing the most likely secondary structure
+ for a given sequence, as well as suboptimal structures and their
+ probabilities. The second module, MacroMoleculeBuilder (MMB)
+ (Flores
+ et al., 2011) is a multifunctional software from simTK which
+ allows for rapid directed folding of oligonucleotides and peptides via
+ straightforward inputs on various platforms. MMB initializes a given
+ ssDNA sequence in a single-helix configuration, and folds it according
+ to user-specified base-pairing conditions via simulation with
+ ficticious forces which pull the respective bases together. E2EDNA 2.0
+ includes scripts which automatically take in secondary structure
+ instructions from NUPACK in the form of a list of paired bases, and
+ generate MMB command files accordingly. The MMB outputs, as initial
+ structures, are then passed to MD simulation for relaxation. The third
+ module, OpenMM
+ (Eastman
+ et al., 2017), is the molecular dynamics engine powering E2EDNA
+ 2.0. OpenMM is used to sample 3D structures of both the ‘free’ aptamer
+ and its aptamer-target complex. The representative DNA aptamer
+ structure is chosen from the MD trajectory via a principal component
+ analysis on backbone dihedrals: a free energy is constructed in the
+ space of top-ranked principal components (5) as reaction coordinates
+ and the lowest free energy structure is passed on to the docking with
+ ligand step. The fourth module, LightDock
+ (Jiménez-García
+ et al., 2018;
+ Roel-Touris
+ et al., 2020), automates the docking between a free DNA aptamer
+ and a given target ligand. LightDock uses a glowworm swarm algorithm;
+ we compute the number of swarms required as being proportional to the
+ approximate surface area of the aptamer and use the best-scored
+ glowworm as the docked complex structure.
+
We conclude the presentation of E2EDNA 2.0 by listing the available
+ simulation modes. We refer the reader to the documentation for more
+ details on the modes, as well as for installation and running the
+ simulation instructions.
Funding from the NSERC Discovery grant RGPIN-201924734 and an NSERC
+ PDF for M.K. is greatly appreciated. Computations were made on the
+ supercomputer Beluga, managed by Calcul Quebec
+ (https://www.calculquebec.ca/) and Compute Canada
+ (https://www.computecanada.ca/). The operation of this supercomputer
+ is funded by the Canada Foundation for Innovation (CFI).
+
+
+
+
+
+
+
+ KilgourMichael
+ LiuTao
+ WalkerBrandon D.
+ RenPengyu
+ SimineLena
+
+ E2EDNA: Simulation Protocol for DNA Aptamers with Ligands
+
+ 202109
+ 20211115
+ 61
+ 9
+ 1549-9596
+ https://pubs.acs.org/doi/10.1021/acs.jcim.1c00696
+ 10.1021/acs.jcim.1c00696
+ 4139
+ 4144
+
+
+
+
+
+ MoritaYoshihiro
+ LeslieMacall
+ KameyamaHiroyasu
+ VolkDavid
+ TanakaTakemi
+
+ Aptamer Therapeutics in Cancer: Current and Future
+
+ 201803
+ 20220127
+ 10
+ 3
+ 2072-6694
+ https://www.mdpi.com/2072-6694/10/3/80
+ 10.3390/cancers10030080
+ 80
+
+
+
+
+
+
+ DaleNicholas
+
+ Real-time measurement of adenosine and ATP release in the central nervous system
+
+ 202103
+ 20220127
+ 17
+ 1
+ 1573-9538
+ https://link.springer.com/10.1007/s11302-020-09733-y
+ 10.1007/s11302-020-09733-y
+ 109
+ 115
+
+
+
+
+
+ CoreyDavid R.
+ DamhaMasad J.
+ ManoharanMuthiah
+
+ Challenges and Opportunities for Nucleic Acid Therapeutics
+
+ 202112
+ 20220127
+ 2159-3337
+ https://www.liebertpub.com/doi/10.1089/nat.2021.0085
+ 10.1089/nat.2021.0085
+ nat.2021.0085
+
+
+
+
+
+
+ ZamayTatiana N.
+ ZamayGalina S.
+ ShnayderNatalia A.
+ DmitrenkoDiana V.
+ ZamaySergey S.
+ YushchenkoVictoria
+ KolovskayaOlga S.
+ SusevskiVanessa
+ BerezovskiMaxim V.
+ KichkailoAnna S.
+
+ Nucleic Acid Aptamers for Molecular Therapy of Epilepsy and Blood-Brain Barrier Damages
+
+ 202003
+ 20220127
+ 19
+ https://linkinghub.elsevier.com/retrieve/pii/S2162253119303543
+ 10.1016/j.omtn.2019.10.042
+ 157
+ 167
+
+
+
+
+
+ Dauphin-DucharmePhilippe
+ PloenseKyle L.
+ Arroyo-CurrásNetzahualcóyotl
+ KippinTod E.
+ PlaxcoKevin W.
+
+ Electrochemical Aptamer-Based Sensors: A Platform Approach to High-Frequency Molecular Monitoring In Situ in the Living Body
+
+ Springer US
+ New York, NY
+ 2022
+ 20220127
+ 2393
+ 978-1-07-161803-5
+ https://link.springer.com/10.1007/978-1-0716-1803-5_25
+ 10.1007/978-1-0716-1803-5_25
+ 479
+ 492
+
+
+
+
+
+ BiondiElisa
+ BennerSteven
+
+ Artificially Expanded Genetic Information Systems for New Aptamer Technologies
+
+ 201805
+ 20220127
+ 6
+ 2
+ 2227-9059
+ http://www.mdpi.com/2227-9059/6/2/53
+ 10.3390/biomedicines6020053
+ 53
+
+
+
+
+
+
+ ZadehJoseph N.
+ SteenbergConrad D.
+ BoisJustin S.
+ WolfeBrian R.
+ PierceMarshall B.
+ KhanAsif R.
+ DirksRobert M.
+ PierceNiles A.
+
+ NUPACK: Analysis and design of nucleic acid systems
+
+ 201101
+ 20220127
+ 32
+ 1
+ https://onlinelibrary.wiley.com/doi/10.1002/jcc.21596
+ 10.1002/jcc.21596
+ 170
+ 173
+
+
+
+
+
+ EastmanPeter
+ SwailsJason
+ ChoderaJohn D.
+ McGibbonRobert T.
+ ZhaoYutong
+ BeauchampKyle A.
+ WangLee-Ping
+ SimmonettAndrew C.
+ HarriganMatthew P.
+ SternChaya D.
+ WiewioraRafal P.
+ BrooksBernard R.
+ PandeVijay S.
+
+ OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
+
+
+ GentlemanRobert
+
+ 201707
+ 20220127
+ 13
+ 7
+ 1553-7358
+ https://dx.plos.org/10.1371/journal.pcbi.1005659
+ 10.1371/journal.pcbi.1005659
+ e1005659
+
+
+
+
+
+
+ Jiménez-GarcíaBrian
+ Roel-TourisJorge
+ Romero-DuranaMiguel
+ VidalMiquel
+ Jiménez-GonzálezDaniel
+ Fernández-RecioJuan
+
+ LightDock: A new multi-scale approach to protein–protein docking
+
+
+ ValenciaAlfonso
+
+ 201801
+ 20220127
+ 34
+ 1
+ 1367-4803
+ https://academic.oup.com/bioinformatics/article/34/1/49/4103399
+ 10.1093/bioinformatics/btx555
+ 49
+ 55
+
+
+
+
+
+ Roel-TourisJorge
+ BonvinAlexandre M J J
+ Jiménez-GarcíaBrian
+
+ LightDock goes information-driven
+
+
+ PontyYann
+
+ 202002
+ 20220127
+ 36
+ 3
+ 1367-4803
+ https://academic.oup.com/bioinformatics/article/36/3/950/5550626
+ 10.1093/bioinformatics/btz642
+ 950
+ 952
+
+
+
+
+
+ FloresS. C.
+ ShermanMichael A.
+ BrunsC. M.
+ EastmanP.
+ AltmanR. B.
+
+ Fast Flexible Modeling of RNA Structure Using Internal Coordinates
+
+ 201109
+ 20220127
+ 8
+ 5
+ 1545-5963
+ http://ieeexplore.ieee.org/document/5611485/
+ 10.1109/TCBB.2010.104
+ 1247
+ 1257
+
+
+
+
+
+ CaroliJ.
+ TaccioliC.
+ De La FuenteA.
+ SerafiniP.
+ BicciatoS.
+
+ APTANI: A computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data
+
+ 201601
+ 20220127
+ 32
+ 2
+ 1367-4803
+ https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv545
+ 10.1093/bioinformatics/btv545
+ 161
+ 164
+
+
+
+
+
+ CaroliJ.
+ ForcatoMattia
+ BicciatoSilvio
+
+ APTANI2: Update of aptamer selection through sequence-structure analysis
+
+
+ BergerBonnie
+
+ 202004
+ 20220127
+ 36
+ 7
+ 1367-4803
+ https://academic.oup.com/bioinformatics/article/36/7/2266/5645172
+ 10.1093/bioinformatics/btz897
+ 2266
+ 2268
+
+
+
+
+
+ TuckerW. O.
+ ShumK. T.
+ TannerJ. A.
+
+ G-quadruplex DNA Aptamers and their Ligands: Structure, Function and Application
+
+ 201203
+ 20220127
+ 18
+ 14
+ http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1381-6128&volume=18&issue=14&spage=2014
+ 10.2174/138161212799958477
+ 2014
+ 2026
+
+
+
+
+
+ ZhouJiehua
+ RossiJohn
+
+ Aptamers as targeted therapeutics: Current potential and challenges
+
+ 201703
+ 20220127
+ 16
+ 3
+ 1474-1776
+ http://www.nature.com/articles/nrd.2016.199
+ 10.1038/nrd.2016.199
+ 181
+ 202
+
+
+
+
+
+ McKeagueMaureen
+ DeRosaMaria C
+
+ Aptamers and SELEX: Tools for the Development of Transformative Molecular Recognition Technology
+
+ 2014
+ 1
+ 1
+ 12
+ 16
+
+
+
+
+
+ TuerkCraig
+ GoldLarry
+
+ Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase
+
+ 199008
+ 20220127
+ 249
+ 4968
+ 0036-8075
+ https://www.science.org/doi/10.1126/science.2200121
+ 10.1126/science.2200121
+ 505
+ 510
+
+
+
+
+
+ ShenLi
+ ChenZhong
+ LiYihan
+ JingPing
+ XieShubao
+ HeShali
+ HePingli
+ ShaoYuanhua
+
+ A chronocoulometric aptamer sensor for adenosine monophosphate
+
+ 2007
+ 20220127
+ 21
+ 1359-7345
+ http://xlink.rsc.org/?DOI=b618909a
+ 10.1039/b618909a
+ 2169
+
+
+
+
+
+
+ KirbyRomy
+ ChoEun Jeong
+ GehrkeBrian
+ BayerTravis
+ ParkYoon Sok
+ NeikirkDean P.
+ McDevittJohn T.
+ EllingtonAndrew D.
+
+ Aptamer-Based Sensor Arrays for the Detection and Quantitation of Proteins
+
+ 200407
+ 20220127
+ 76
+ 14
+ 0003-2700
+ https://pubs.acs.org/doi/10.1021/ac049858n
+ 10.1021/ac049858n
+ 4066
+ 4075
+
+
+
+
+
+ McConnellErin M.
+ NguyenJulie
+ LiYingfu
+
+ Aptamer-Based Biosensors for Environmental Monitoring
+
+ 202005
+ 20220127
+ 8
+ 2296-2646
+ https://www.frontiersin.org/article/10.3389/fchem.2020.00434/full
+ 10.3389/fchem.2020.00434
+ 434
+
+
+
+
+
+
+ QuHao
+ CsordasAndrew T.
+ WangJinpeng
+ OhSeung Soo
+ EisensteinMichael S.
+ SohHyongsok Tom
+
+ Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions
+
+ 201608
+ 20220127
+ 10
+ 8
+ 1936-0851
+ https://pubs.acs.org/doi/10.1021/acsnano.6b02558
+ 10.1021/acsnano.6b02558
+ 7558
+ 7565
+
+
+
+
+
+ MehlhornAsol
+ RahimiParvaneh
+ JosephYvonne
+
+ Aptamer-Based Biosensors for Antibiotic Detection: A Review
+
+ 201806
+ 20220127
+ 8
+ 2
+ 2079-6374
+ http://www.mdpi.com/2079-6374/8/2/54
+ 10.3390/bios8020054
+ 54
+
+
+
+
+
+
+ SinhaKoel
+ Das MukhopadhyayChitrangada
+
+ Quantitative detection of neurotransmitter using aptamer: From diagnosis to therapeutics
+
+ 202012
+ 20220127
+ 45
+ 1
+ 0250-5991
+ http://link.springer.com/10.1007/s12038-020-0017-x
+ 10.1007/s12038-020-0017-x
+ 44
+
+
+
+
+
+
diff --git a/joss.04182/10.21105.joss.04182.pdf b/joss.04182/10.21105.joss.04182.pdf
new file mode 100644
index 0000000000..4bed816bdc
Binary files /dev/null and b/joss.04182/10.21105.joss.04182.pdf differ