diff --git a/joss.06187/10.21105.joss.06187.crossref.xml b/joss.06187/10.21105.joss.06187.crossref.xml new file mode 100644 index 0000000000..8eb9c6b91b --- /dev/null +++ b/joss.06187/10.21105.joss.06187.crossref.xml @@ -0,0 +1,207 @@ + + + + 20240324T182937-73f70d3ff2c279c10c6f6a2adf738c070047eecc + 20240324182937 + + JOSS Admin + admin@theoj.org + + The Open Journal + + + + + Journal of Open Source Software + JOSS + 2475-9066 + + 10.21105/joss + https://joss.theoj.org + + + + + 03 + 2024 + + + 9 + + 95 + + + + Systems Neuro Browser (SNUB) + + + + Caleb + Weinreb + https://orcid.org/0000-0001-6100-6084 + + + Mohammed Abdal Monium + Osman + https://orcid.org/0000-0001-8606-6518 + + + Maya + Jay + https://orcid.org/0000-0001-5537-6476 + + + Sandeep Robert + Datta + https://orcid.org/0000-0002-8068-3862 + + + + 03 + 24 + 2024 + + + 6187 + + + 10.21105/joss.06187 + + + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + http://creativecommons.org/licenses/by/4.0/ + + + + Software archive + 10.5281/zenodo.10825136 + + + GitHub review issue + https://github.com/openjournals/joss-reviews/issues/6187 + + + + 10.21105/joss.06187 + https://joss.theoj.org/papers/10.21105/joss.06187 + + + https://joss.theoj.org/papers/10.21105/joss.06187.pdf + + + + + + Vispy/vispy: Version 0.11.0 + Campagnola + 10.5281/zenodo.6795163 + 2022 + Campagnola, L., Larson, E., Klein, +A., Hoese, D., Siddharth, Rossant, C., Griffiths, A., Rougier, N. P., +asnt, Mühlbauer, K., Taylor, A., MSS, Lambert, T., sylm21, Champandard, +A. J., Hunter, M., Robitaille, T., Kaptan, M. F., Andrade, E. S. de, … +GESTES, C. (2022). Vispy/vispy: Version 0.11.0 (Version v0.11.0). +Zenodo. https://doi.org/10.5281/zenodo.6795163 + + + The mouse action recognition system (MARS) +software pipeline for automated analysis of social behaviors in +mice + Segalin + eLife + 10 + 10.7554/eLife.63720 + 2050-084X + 2021 + Segalin, C., Williams, J., Karigo, +T., Hui, M., Zelikowsky, M., Sun, J. J., Perona, P., Anderson, D. J., +& Kennedy, A. (2021). The mouse action recognition system (MARS) +software pipeline for automated analysis of social behaviors in mice. +eLife, 10, e63720. +https://doi.org/10.7554/eLife.63720 + + + Rastermap: A discovery method for neural +population recordings + Stringer + bioRxiv + 10.1101/2023.07.25.550571 + 2023 + Stringer, C., Zhong, L., Syeda, A., +Du, F., Kesa, M., & Pachitariu, M. (2023). Rastermap: A discovery +method for neural population recordings. bioRxiv. +https://doi.org/10.1101/2023.07.25.550571 + + + VidIO: Simple, performant video reading and +writing in python + Bohnslav + 2024 + Bohnslav, J. (2024). VidIO: Simple, +performant video reading and writing in python (Version 0.0.4). +https://github.com/jbohnslav/vidio + + + UMAP: Uniform manifold approximation and +projection + McInnes + Journal of Open Source +Software + 29 + 3 + 10.21105/joss.00861 + 2018 + McInnes, L., Healy, J., Saul, N., +& Großberger, L. (2018). UMAP: Uniform manifold approximation and +projection. Journal of Open Source Software, 3(29), 861. +https://doi.org/10.21105/joss.00861 + + + Mouse head schema + Petrucco + 10.5281/zenodo.3925903 + 2020 + Petrucco, L. (2020). Mouse head +schema. Zenodo. +https://doi.org/10.5281/zenodo.3925903 + + + The neurodata without borders ecosystem for +neurophysiological data science + Rübel + eLife + 11 + 10.7554/eLife.78362 + 2050-084X + 2022 + Rübel, O., Tritt, A., Ly, R., +Dichter, B. K., Ghosh, S., Niu, L., Baker, P., Soltesz, I., Ng, L., +Svoboda, K., Frank, L., & Bouchard, K. E. (2022). The neurodata +without borders ecosystem for neurophysiological data science. eLife, +11, e78362. https://doi.org/10.7554/eLife.78362 + + + Systems neuro browser (SNUB) example +datasets + Weinreb + 10.5281/zenodo.10578025 + 2024 + Weinreb, C., Osman, M. A. M., Jay, +M., & Datta, S. R. (2024). Systems neuro browser (SNUB) example +datasets [Data set]. Zenodo. +https://doi.org/10.5281/zenodo.10578025 + + + + + + diff --git a/joss.06187/10.21105.joss.06187.jats b/joss.06187/10.21105.joss.06187.jats new file mode 100644 index 0000000000..803d3905c7 --- /dev/null +++ b/joss.06187/10.21105.joss.06187.jats @@ -0,0 +1,383 @@ + + +
+ + + + +Journal of Open Source Software +JOSS + +2475-9066 + +Open Journals + + + +6187 +10.21105/joss.06187 + +Systems Neuro Browser (SNUB) + + + +https://orcid.org/0000-0001-6100-6084 + +Weinreb +Caleb + + + + +https://orcid.org/0000-0001-8606-6518 + +Osman +Mohammed Abdal Monium + + + + +https://orcid.org/0000-0001-5537-6476 + +Jay +Maya + + + + +https://orcid.org/0000-0002-8068-3862 + +Datta +Sandeep Robert + + + + + +Department of Neurobiology, Harvard Medical School, Boston, +Massachusetts, United States of America + + + + +24 +3 +2024 + +9 +95 +6187 + +Authors of papers retain copyright and release the +work under a Creative Commons Attribution 4.0 International License (CC +BY 4.0) +2022 +The article authors + +Authors of papers retain copyright and release the work under +a Creative Commons Attribution 4.0 International License (CC BY +4.0) + + + +Python +neuroscience +animal behavior +graphical user interface + + + + + + Summary +

A core goal of neuroscience is to discover temporal patterns in + behavior and neurophysiology. Though a variety of tools exist to + characterize these relationships, there is still no substitute for + direct inspection as a way to notice unexpected patterns and generate + new hypotheses. To facilitate this process, we have developed the + Systems Neuro Browser (SNUB), a graphical user interface for exploring + time-series data. SNUB is a flexible, general-purpose tool that allows + users to build a dashboard of synchronized data views, including + neural recordings, behavioral videos, and annotations derived from + these data.

+
+ + Statement of need +

Direct inspection of behavior and neurophysiology recordings is + hard because the data are typically high-dimensional and come in a + variety of modalities (such as raw video, pose tracking, spike trains, + calcium traces, etc.) with different sampling rates and methods of + visualization. SNUB lowers the activation energy for data exploration + by integrating these data streams into a single easy-to-navigate + interface. The main intended user is a researcher who has collected + data and started to analyze it (e.g. in Python). They may already be + generating static versions of the visualizations afforded by SNUB, + such as aligned heatmaps and trace plots, and now would like a + frictionless way to pan/zoom around these plots and keep all the data + views linked together. Importantly, SNUB should be thought of as akin + to a plotting library, rather than a data analysis tool.

+

The interface is divided into synchronized windows that each show a + different data stream. The linked data views allow users to quickly + inspect the relationships between experimental phenomena, such as the + behaviors that occur during a particular pattern of neural activity + ([fig:screenshot]).

+ +

Screenshot from + SNUB.

+ +
+

We provide dedicated widgets and loading functions for exploring + raw video, 3D animal pose, behavior annotations, electrophysiology + recordings, and calcium imaging data—either as a raster or as a + super-position of labeled regions of interest (ROIs). More broadly, + SNUB can display any data that takes the form of a heatmap, scatter + plot, video, or collection of named temporally-varying signals.

+

In addition to the front-end GUI, we include a library of functions + that ingest data (or paths to the data) and visualization parameters, + and then organize these in a format that is quickly readable by the + SNUB viewer. The following code, for example, creates a project with + paired electrophysiology and video data.

+ snub.io.create_project(project_directory, duration=1800) +snub.io.add_video(project_directory, 'path/to/my_video.avi', name='IR_camera') +snub.io.add_spikeplot(project_directory, 'my_ephys_data', spike_data) +

We also provide a rudimentary tool for automatically generating + SNUB datasets from Neurodata Without Borders (NWB) files, which + contain raw and processed data from neuroscience recordings + (Rübel et + al., 2022). The data in NWB files are stored hierarchically, + and each component of the hierarchy has a specific neurodata type that + reflects the measurement modality (e.g, “Units” for spike trains, + “ImageSeries” for video). Our conversion tool generates a SNUB display + element for each supported neurodata type. Users can optionally + restrict this process to a subset of the NWB hierarchy (e.g., include + pose tracking while excluding electrophysiology, or include just a + subset of electrophysiology measurements).

+

SNUB is a flexible general-purpose tool that complements more + specialized packages such as rastermap + (Stringer + et al., 2023) and Bento + (Segalin + et al., 2021). The rastermap interface, for example, is + hard-coded for the display of neural activity rasters, ROIs and 2D + embeddings of neural activity. Bento is hard-coded for the display of + neural activity rasters, behavioral videos and behavioral annotations. + SNUB can reproduce either of these configurations and is especially + useful when one wishes to include additional types of data or more + directly customize the way that data is rendered.

+

The graphics in SNUB are powered by vispy + (Campagnola + et al., 2022). SNUB includes wrappers for several + dimensionality reduction methods, including rastermap + (Stringer + et al., 2023) for ordering raster plots and UMAP + (McInnes + et al., 2018) for 2D scatter plots. Fast video loading is + enabled by VidIO + (Bohnslav, + 2024).

+

The SNUB documentation includes a set of tutorials that make use of + original data collected in the Datta lab between 2020 and 2022. All + experimental procedures were approved by the Harvard Medical School + Institutional Animal Care and Use Committee (Protocol Number 04930) + and were performed in compliance with the ethical regulations of + Harvard University as well as the Guide for Animal Care and Use of + Laboratory Animals. Experimental protocols and processed data have + been deposited on Zenodo + (Weinreb + et al., 2024).

+
+ + Acknowledgements +

CW is a Fellow of The Jane Coffin Childs Memorial Fund for Medical + Research. SRD is supported by NIH grants U19NS113201, RF1AG073625, + R01NS114020, the Brain Research Foundation, and the Simons + Collaboration on the Global Brain. The SNUB app icon was adapted from + a drawing contributed to scidraw by Luigi Petrucco + (Petrucco, + 2020).

+
+ + + + + + + CampagnolaLuke + LarsonEric + KleinAlmar + HoeseDavid + Siddharth + RossantCyrille + GriffithsAdam + RougierNicolas P. + asnt + MühlbauerKai + TaylorAlexander + MSS + LambertTalley + sylm21 + ChampandardAlex J. + HunterMax + RobitailleThomas + KaptanMustafa Furkan + AndradeElliott Sales de + CzajkowskiKarl + GaifasLorenzo + BacchiniAlessandro + FavelierGuillaume + CombrissonEtienne + ThenTech + fschill + HarfoucheMark + AyeMichael + ElterenCasper van + GESTESCedric + + Vispy/vispy: Version 0.11.0 + Zenodo + 202207 + https://doi.org/10.5281/zenodo.6795163 + 10.5281/zenodo.6795163 + + + + + + SegalinCristina + WilliamsJalani + KarigoTomomi + HuiMay + ZelikowskyMoriel + SunJennifer J + PeronaPietro + AndersonDavid J + KennedyAnn + + The mouse action recognition system (MARS) software pipeline for automated analysis of social behaviors in mice + eLife + + BermanGordon J + WassumKate M + GalAsaf + + eLife Sciences Publications, Ltd + 202111 + 10 + 2050-084X + https://doi.org/10.7554/eLife.63720 + 10.7554/eLife.63720 + e63720 + + + + + + + StringerCarsen + ZhongLin + SyedaAtika + DuFengtong + KesaMaria + PachitariuMarius + + Rastermap: A discovery method for neural population recordings + bioRxiv + Cold Spring Harbor Laboratory + 2023 + https://www.biorxiv.org/content/early/2023/08/07/2023.07.25.550571 + 10.1101/2023.07.25.550571 + + + + + + BohnslavJim + + VidIO: Simple, performant video reading and writing in python + 20240311 + https://github.com/jbohnslav/vidio + + + + + + McInnesLeland + HealyJohn + SaulNathaniel + GroßbergerLukas + + UMAP: Uniform manifold approximation and projection + Journal of Open Source Software + The Open Journal + 2018 + 3 + 29 + https://doi.org/10.21105/joss.00861 + 10.21105/joss.00861 + 861 + + + + + + + PetruccoLuigi + + Mouse head schema + Zenodo + 202007 + https://doi.org/10.5281/zenodo.3925903 + 10.5281/zenodo.3925903 + + + + + + RübelOliver + TrittAndrew + LyRyan + DichterBenjamin K + GhoshSatrajit + NiuLawrence + BakerPamela + SolteszIvan + NgLydia + SvobodaKarel + FrankLoren + BouchardKristofer E + + The neurodata without borders ecosystem for neurophysiological data science + eLife + + ColginLaura L + JadhavShantanu P + + eLife Sciences Publications, Ltd + 202210 + 11 + 2050-084X + https://doi.org/10.7554/eLife.78362 + 10.7554/eLife.78362 + e78362 + + + + + + + WeinrebCaleb + OsmanMohammed Abdal Monium + JayMaya + DattaSandeep Robert + + Systems neuro browser (SNUB) example datasets + Zenodo + 202401 + https://doi.org/10.5281/zenodo.10578025 + 10.5281/zenodo.10578025 + + + + +
diff --git a/joss.06187/10.21105.joss.06187.pdf b/joss.06187/10.21105.joss.06187.pdf new file mode 100644 index 0000000000..3e187654ab Binary files /dev/null and b/joss.06187/10.21105.joss.06187.pdf differ diff --git a/joss.06187/media/docs/media/screenshot.png b/joss.06187/media/docs/media/screenshot.png new file mode 100644 index 0000000000..2e7eefdddf Binary files /dev/null and b/joss.06187/media/docs/media/screenshot.png differ