diff --git a/joss.05397/10.21105.joss.05397.crossref.xml b/joss.05397/10.21105.joss.05397.crossref.xml
new file mode 100644
index 0000000000..f56e791f38
--- /dev/null
+++ b/joss.05397/10.21105.joss.05397.crossref.xml
@@ -0,0 +1,391 @@
+
+
+
+ 20231019T100359-d2ff7b2afc7d410ff5b1b31b2c4d79ed578b8c85
+ 20231019100359
+
+ JOSS Admin
+ admin@theoj.org
+
+ The Open Journal
+
+
+
+
+ Journal of Open Source Software
+ JOSS
+ 2475-9066
+
+ 10.21105/joss
+ https://joss.theoj.org
+
+
+
+
+ 10
+ 2023
+
+
+ 8
+
+ 90
+
+
+
+ Baargin: a Nextflow workflow for the automatic analysis
+of bacterial genomics data with a focus on Antimicrobial
+Resistance
+
+
+
+ Juliette
+ Hayer
+ https://orcid.org/0000-0003-4899-9637
+
+
+ Jacques
+ Dainat
+ https://orcid.org/0000-0002-6629-0173
+
+
+ Ella
+ Marcy
+ https://orcid.org/0009-0002-6000-1665
+
+
+ Anne-Laure
+ Bañuls
+ https://orcid.org/0000-0002-2106-8667
+
+
+
+ 10
+ 19
+ 2023
+
+
+ 5397
+
+
+ 10.21105/joss.05397
+
+
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+ http://creativecommons.org/licenses/by/4.0/
+
+
+
+ Software archive
+ 10.5281/zenodo.8386399
+
+
+ GitHub review issue
+ https://github.com/openjournals/joss-reviews/issues/5397
+
+
+
+ 10.21105/joss.05397
+ https://joss.theoj.org/papers/10.21105/joss.05397
+
+
+ https://joss.theoj.org/papers/10.21105/joss.05397.pdf
+
+
+
+
+
+ The staggering death toll of drug-resistant
+bacteria
+ Thompson
+ Nature
+ 10.1038/D41586-022-00228-X
+ 0028-0836
+ 2022
+ Thompson, T. (2022). The staggering
+death toll of drug-resistant bacteria. Nature.
+https://doi.org/10.1038/D41586-022-00228-X
+
+
+ Nextflow enables reproducible computational
+workflows
+ DI Tommaso
+ Nature Biotechnology 2017
+35:4
+ 4
+ 35
+ 10.1038/nbt.3820
+ 1546-1696
+ 2017
+ DI Tommaso, P., Chatzou, M., Floden,
+E. W., Barja, P. P., Palumbo, E., & Notredame, C. (2017). Nextflow
+enables reproducible computational workflows. Nature Biotechnology 2017
+35:4, 35(4), 316–319.
+https://doi.org/10.1038/nbt.3820
+
+
+ Bactopia: a flexible pipeline for complete
+analysis of bacterial genomes
+ Petit III
+ Msystems
+ 10.1128/mSystems.00190-20
+ 2379-5077
+ 2020
+ Petit III, &. R., R. A. (2020).
+Bactopia: a flexible pipeline for complete analysis of bacterial
+genomes. Msystems.
+https://doi.org/10.1128/mSystems.00190-20
+
+
+ fastp: an ultra-fast all-in-one FASTQ
+preprocessor
+ Chen
+ Bioinformatics
+ 17
+ 34
+ 10.1093/BIOINFORMATICS/BTY560
+ 1367-4803
+ 2018
+ Chen, S., Zhou, Y., Chen, Y., &
+Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor.
+Bioinformatics, 34(17), i884–i890.
+https://doi.org/10.1093/BIOINFORMATICS/BTY560
+
+
+ Using SPAdes De Novo
+Assembler
+ Prjibelski
+ Current Protocols in
+Bioinformatics
+ 1
+ 70
+ 10.1002/CPBI.102
+ 1934-340X
+ 2020
+ Prjibelski, A., Antipov, D.,
+Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes
+De Novo Assembler. Current Protocols in Bioinformatics, 70(1), e102.
+https://doi.org/10.1002/CPBI.102
+
+
+ Unicycler: Resolving bacterial genome
+assemblies from short and long sequencing reads
+ Wick
+ PLOS Computational Biology
+ 6
+ 13
+ 10.1371/JOURNAL.PCBI.1005595
+ 1553-7358
+ 2017
+ Wick, R. R., Judd, L. M., Gorrie, C.
+L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome
+assemblies from short and long sequencing reads. PLOS Computational
+Biology, 13(6), e1005595.
+https://doi.org/10.1371/JOURNAL.PCBI.1005595
+
+
+ Improved metagenomic analysis with Kraken
+2
+ Wood
+ Genome Biology
+ 1
+ 20
+ 10.1186/S13059-019-1891-0
+ 2019
+ Wood, D. E., Lu, J., & Langmead,
+B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology,
+20(1), 1–13.
+https://doi.org/10.1186/S13059-019-1891-0
+
+
+ Metagenome analysis using the Kraken software
+suite
+ Lu
+ Nature protocols
+ 12
+ 17
+ 10.1038/S41596-022-00738-Y
+ 2022
+ Lu, J., Rincon, N., Wood, D. E.,
+Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S. L., &
+Steinegger, M. (2022). Metagenome analysis using the Kraken software
+suite. Nature Protocols, 17(12), 2815.
+https://doi.org/10.1038/S41596-022-00738-Y
+
+
+ QUAST: quality assessment tool for genome
+assemblies
+ Gurevich
+ Bioinformatics
+ 8
+ 29
+ 10.1093/BIOINFORMATICS/BTT086
+ 1367-4803
+ 2013
+ Gurevich, A., Saveliev, V., Vyahhi,
+N., & Tesler, G. (2013). QUAST: quality assessment tool for genome
+assemblies. Bioinformatics, 29(8), 1072–1075.
+https://doi.org/10.1093/BIOINFORMATICS/BTT086
+
+
+ BUSCO Update: Novel and Streamlined Workflows
+along with Broader and Deeper Phylogenetic Coverage for Scoring of
+Eukaryotic, Prokaryotic, and Viral Genomes
+ Manni
+ Molecular Biology and
+Evolution
+ 10
+ 38
+ 10.1093/MOLBEV/MSAB199
+ 2021
+ Manni, M., Berkeley, M. R., Seppey,
+M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO Update: Novel and
+Streamlined Workflows along with Broader and Deeper Phylogenetic
+Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes.
+Molecular Biology and Evolution, 38(10), 4647–4654.
+https://doi.org/10.1093/MOLBEV/MSAB199
+
+
+ MLST
+ Seemann
+ 2022
+ Seemann, T. (2022). MLST.
+https://github.com/tseemann/mlst
+
+
+ In silico detection and typing of plasmids
+using PlasmidFinder and plasmid multilocus sequence
+typing
+ Carattoli
+ Antimicrobial agents and
+chemotherapy
+ 7
+ 58
+ 10.1128/AAC.02412-14
+ 1098-6596
+ 2014
+ Carattoli, A., Zankari, E.,
+Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., Aarestrup, F.
+M., & Hasman, H. (2014). In silico detection and typing of plasmids
+using PlasmidFinder and plasmid multilocus sequence typing.
+Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903.
+https://doi.org/10.1128/AAC.02412-14
+
+
+ Platon: identification and characterization
+of bacterial plasmid contigs in short-read draft assemblies exploiting
+protein sequence-based replicon distribution scores
+ Schwengers
+ Microbial genomics
+ 10
+ 6
+ 10.1099/MGEN.0.000398
+ 2057-5858
+ 2020
+ Schwengers, O., Barth, P.,
+Falgenhauer, L., Hain, T., Chakraborty, T., & Goesmann, A. (2020).
+Platon: identification and characterization of bacterial plasmid contigs
+in short-read draft assemblies exploiting protein sequence-based
+replicon distribution scores. Microbial Genomics, 6(10), 1–12.
+https://doi.org/10.1099/MGEN.0.000398
+
+
+ CARD 2023: expanded curation, support for
+machine learning, and resistome prediction at the Comprehensive
+Antibiotic Resistance Database
+ Alcock
+ Nucleic acids research
+ D1
+ 51
+ 10.1093/NAR/GKAC920
+ 1362-4962
+ 2023
+ Alcock, B. P., Huynh, W., Chalil, R.,
+Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau,
+A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M.
+C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X.,
+Kaur, K., … McArthur, A. G. (2023). CARD 2023: expanded curation,
+support for machine learning, and resistome prediction at the
+Comprehensive Antibiotic Resistance Database. Nucleic Acids Research,
+51(D1). https://doi.org/10.1093/NAR/GKAC920
+
+
+ AMRFinderPlus and the Reference Gene Catalog
+facilitate examination of the genomic links among antimicrobial
+resistance, stress response, and virulence
+ Feldgarden
+ Scientific Reports 2021 11:1
+ 1
+ 11
+ 10.1038/s41598-021-91456-0
+ 2045-2322
+ 0123456789
+ 2021
+ Feldgarden, M., Brover, V.,
+Gonzalez-Escalona, N., Frye, J. G., Haendiges, J., Haft, D. H.,
+Hoffmann, M., Pettengill, J. B., Prasad, A. B., Tillman, G. E., Tyson,
+G. H., & Klimke, W. (2021). AMRFinderPlus and the Reference Gene
+Catalog facilitate examination of the genomic links among antimicrobial
+resistance, stress response, and virulence. Scientific Reports 2021
+11:1, 11(1), 1–9.
+https://doi.org/10.1038/s41598-021-91456-0
+
+
+ Prokka: rapid prokaryotic genome
+annotation
+ Seemann
+ Bioinformatics
+ 14
+ 30
+ 10.1093/BIOINFORMATICS/BTU153
+ 1367-4803
+ 2014
+ Seemann, T. (2014). Prokka: rapid
+prokaryotic genome annotation. Bioinformatics, 30(14), 2068–2069.
+https://doi.org/10.1093/BIOINFORMATICS/BTU153
+
+
+ Bakta: rapid and standardized annotation of
+bacterial genomes via alignment-free sequence
+identification
+ Schwengers
+ Microbial Genomics
+ 11
+ 7
+ 10.1099/MGEN.0.000685
+ 2021
+ Schwengers, O., Jelonek, L.,
+Dieckmann, M. A., Beyvers, S., Blom, J., & Goesmann, A. (2021).
+Bakta: rapid and standardized annotation of bacterial genomes via
+alignment-free sequence identification. Microbial Genomics, 7(11), 685.
+https://doi.org/10.1099/MGEN.0.000685
+
+
+ Roary: rapid large-scale prokaryote pan
+genome analysis
+ Page
+ Bioinformatics
+ 22
+ 31
+ 10.1093/BIOINFORMATICS/BTV421
+ 1367-4803
+ 2015
+ Page, A. J., Cummins, C. A., Hunt,
+M., Wong, V. K., Reuter, S., Holden, M. T. G., Fookes, M., Falush, D.,
+Keane, J. A., & Parkhill, J. (2015). Roary: rapid large-scale
+prokaryote pan genome analysis. Bioinformatics, 31(22), 3691–3693.
+https://doi.org/10.1093/BIOINFORMATICS/BTV421
+
+
+
+
+
+
diff --git a/joss.05397/10.21105.joss.05397.jats b/joss.05397/10.21105.joss.05397.jats
new file mode 100644
index 0000000000..b0833e049b
--- /dev/null
+++ b/joss.05397/10.21105.joss.05397.jats
@@ -0,0 +1,770 @@
+
+
+
+
+
+
+
+Journal of Open Source Software
+JOSS
+
+2475-9066
+
+Open Journals
+
+
+
+5397
+10.21105/joss.05397
+
+Baargin: a Nextflow workflow for the automatic analysis
+of bacterial genomics data with a focus on Antimicrobial
+Resistance
+
+
+
+https://orcid.org/0000-0003-4899-9637
+
+Hayer
+Juliette
+
+
+
+*
+
+
+https://orcid.org/0000-0002-6629-0173
+
+Dainat
+Jacques
+
+
+
+
+https://orcid.org/0009-0002-6000-1665
+
+Marcy
+Ella
+
+
+
+
+
+https://orcid.org/0000-0002-2106-8667
+
+Bañuls
+Anne-Laure
+
+
+
+
+
+
+MIVEGEC, University of Montpellier, IRD, CNRS, 34394,
+Montpellier, France
+
+
+
+
+Laboratoire Mixte International Drug Resistance in
+Southeast Asia
+
+
+
+
+Centre Hospitalier Universitaire (CHU) Lapeyronie,
+Montpellier, France
+
+
+
+
+* E-mail:
+
+
+18
+2
+2023
+
+8
+90
+5397
+
+Authors of papers retain copyright and release the
+work under a Creative Commons Attribution 4.0 International License (CC
+BY 4.0)
+2022
+The article authors
+
+Authors of papers retain copyright and release the work under
+a Creative Commons Attribution 4.0 International License (CC BY
+4.0)
+
+
+
+Nextflow
+Whole Genome Shotgun
+Genomics
+Long reads sequencing technology
+Short reads sequencing technology
+Antimicrobial Resistance
+Pangenome
+
+
+
+
+
+ Summary
+
The emergence and development of Antimicrobial Resistance (AMR) is
+ a global health problem, that could cause about 10 million deaths
+ yearly by 2050
+ (Thompson,
+ 2022). The study of the genomes of these (multi)resistant
+ bacterial strains is of high importance to understand emergence and
+ circulation of the resistance. In the past couple of decades, high
+ throughput sequencing technologies have seriously improved and it has
+ become more affordable to sequence the full genomes of hundreds of
+ bacterial strains at a time. As a counterpart, these experiments
+ produce large amount of data that needs to be analysed by various
+ bioinformatics methods and tools for reconstructing the genomes and
+ therefore identify their specific features and the genetic
+ determinants of the AMR. For automating the bioinformatics analysis of
+ multiple strains, we have developed a Nextflow
+ (DI
+ Tommaso et al., 2017) workflow called baargin
+ (Bacterial Assembly and Antimicrobial Resistance Genes detection In
+ Nextflow)
+ https://github.com/jhayer/baargin.
+ It enables to conduct sequencing reads quality control, genome
+ assembly and annotation, Multi-Locus Sequence Typing and plasmid
+ identification, as well as antimicrobial resistance determinants
+ detection, and pangenome analysis. The use of Nextflow, a workflow
+ management system, makes our workflow portable, flexible, and able to
+ conduct reproducible analyses.
+
+
+ Statement of need
+
High Throughput Sequencing technologies produce a significant
+ amount of data and researchers are producing genomics data all over
+ the world on a daily basis. These technologies are notably used for
+ studying bacterial genomes in order to understand the spread of
+ bacterial pathogens and their resistance to antibiotics. In the
+ bacterial genomics field, it is possible to sequence the DNA from
+ multiple bacterial strains at the same time. The analysis of these
+ sequencing data requires the use of a wide range of bioinformatics
+ programs to be able to identify the genes and their functions, and
+ among those, the genes and mutations conferring resistance to
+ antimicrobial drugs. In order to make the results of these analyses
+ comparable, it is crucial to standardise, automate and parallelise all
+ the steps. The baargin workflow allows the user to
+ perform a complete in silico analysis of bacterial
+ genomes, from the quality control of the raw data, to the detection of
+ AMR genes and mutations, on multiple datasets of the same bacterial
+ species in parallel. It compiles and summarise the results from all
+ the analysis steps, allowing comparative studies. As a last step,
+ baargin performs a pangenome analysis of all the
+ strains provided, producing the basis for the construction of a
+ phylogenetic tree. The use of Nextflow and containers ensures the
+ reproducibility of the data analysis. Only few bacterial genomics
+ workflows are available, like Bactopia
+ (Petit
+ III, 2020), which is highly flexible and complete in term of
+ tools available. Therefore, we needed a lighter workflow, with only a
+ few tools and databases installed for our collaborators that have only
+ limited computing resources and storage. Also,
+ baargin is specifically designed for detecting AMR
+ genes and plasmid features, and include a decontamination step of the
+ assembly, allowing the downstream analyses to be performed especially
+ on the contigs belonging to the targeted species.
+
+
+ Materials and Methods
+
+ Features
+
Baargin is designed to automatically parallelise workflow steps.
+ It does not require manual intervention from the users between
+ steps. Each workflow step, called process, uses containers, via
+ Docker or Singularity, which also greatly improves traceability and
+ reproducibility. Additional processes can be easily added in the
+ future as the workflow is designed in modules, making it flexible
+ for adding or removing steps.
+
+
+ Workflow
+
[fig:Figure1]
+ describes the workflow:
+
+
+
Input can be either a folder containing paired-end short
+ reads (fastq format), a folder containing already assembled
+ contigs (fasta format files), or an index file containing the
+ paths to pair-end short reads (fastq files) and to long reads
+ (ONT, fastq file) for the same sample/strain in order to perform
+ hybrid assembly. If assembled contigs are provided, the analysis
+ will start at step 4.
+
+
+
Quality check and adapters removal is performed on the short
+ reads using Fastp
+ (Chen
+ et al., 2018).
+
+
+
De novo assembly is run using SPAdes
+ (Prjibelski
+ et al., 2020) if only short reads were provided, and with
+ Unicycler
+ (Wick
+ et al., 2017) for a hybrid assembly when short and long
+ reads are provided.
+
+
+
Taxonomic assignment of the contigs is performed using
+ Kraken2
+ (Wood
+ et al., 2019) and the contigs classified at the taxonomic
+ level provided by the user (with the taxid, and including the
+ children taxa) are retrieved and therefore named as
+ “deconta” for decontaminated contigs
+ (Lu
+ et al., 2022). The dataset containing all the contigs are
+ named as “raw”. From here all the steps except
+ the annotation (8) will be performed on both sets of contigs
+ “raw” and “deconta”.
+
+
+
A quality check of the assembly is conducted using Quast
+ (Gurevich
+ et al., 2013) and BUSCO
+ (Manni
+ et al., 2021). For BUSCO, the users have the possibility
+ to specify the taxonomic lineage database to use for searching
+ the housekeeping genes (at the class level of the strain to
+ analyse for example:
+ enterobacterales_odb10)
+
+
+
The contigs (raw and
+ deconta) are then screened to identify the
+ sequence type of the strain using the MLST tool (Multi-Locus
+ Sequence Typing)
+ (Seemann,
+ 2022).
+
+
+
The contigs are subsequently submitted to plasmid
+ identification using PlasmidFinder
+ (Carattoli
+ et al., 2014) and additionally with Platon if the user
+ provides a database for it
+ (Schwengers
+ et al., 2020).
+
+
+
Antimicrobial Resistance Genes (ARGs) are then searched in
+ the contigs using both CARD RGI
+ (Alcock
+ et al., 2023) and the NCBI AMRFinderPlus
+ (Feldgarden
+ et al., 2021). For certain species only, AMRFinderPlus
+ can also detect some mutations conferring resistance, if the
+ user provides that option.
+
+
+
A genome annotation is performed on the
+ deconta contigs using Prokka by default
+ (Seemann,
+ 2014), or using Bakta
+ (Schwengers
+ et al., 2021) if the user provides a database for it.
+
+
+
Once all the strains datasets provided are annotated a
+ pangenome analysis is done using Roary
+ (Page
+ et al., 2015).
+
+
+
+
+ Output
+
The results are located in a nested folder architecture. For each
+ dataset, a folder with the sampleID is created, and contains 5
+ subfolders: - qc - assembly - AMR - annotation - plasmids These
+ subfolders contain the main outputs from the concerned analyses.
+ Additionally, at the root of the results folder (indicated by the
+ user) 2 folders are created: pangenome, containing
+ the results for Roary, and compile_results that
+ contains summary files for each analysis where the results for all
+ datasets provided in input are compiled as presence/absence matrices
+ for further comparative analyses.
+
+
+
+ Discussion and conclusions
+
We presented here an easy-to-use workflow for Bacterial Assembly
+ and Antimicrobial Resistance Genes detection In Nextflow:
+ baargin. It allows the users to analyse genomic
+ datasets from short and long sequencing reads, of several bacterial
+ strains from the same species in one command line. The workflow will
+ automatically assemble the genomes, check for contamination and
+ specifically extract the sequences that belong to the expected taxon.
+ It will then identify their sequence type and screen the assemblies
+ for plasmids sequences and ARGs. The fact that
+ baargin is implemented in Nextflow and is based on
+ containers makes the analyses reproducible. Its modular design makes
+ it easy to customise and extend, by adding new modules for new
+ processes.
+
+
+ Figures
+
+
Flowchart of baargin
+ workflow.
+
+
+
+
+ Acknowledgements
+
We acknowledge contributions from Son Thai Nguyen and Julio
+ Benavides during the development of this workflow.
+
The authors acknowledge the ISO 9001 certified IRD i-Trop HPC
+ (South Green Platform) at IRD Montpellier for providing HPC resources
+ to develop the workflow reported within this paper.
+ https://bioinfo.ird.fr
+ http://www.southgreen.fr
+
+
+
+
+
+
+
+ ThompsonTosin
+
+ The staggering death toll of drug-resistant bacteria
+
+ Springer Science; Business Media LLC
+ 202201
+ 0028-0836
+ 10.1038/D41586-022-00228-X
+
+
+
+
+
+ DI TommasoPaolo
+ ChatzouMaria
+ FlodenEvan W.
+ BarjaPablo Prieto
+ PalumboEmilio
+ NotredameCedric
+
+ Nextflow enables reproducible computational workflows
+
+ Nature Publishing Group
+ 201704
+ 35
+ 4
+ 1546-1696
+ https://www.nature.com/articles/nbt.3820
+ 10.1038/nbt.3820
+ 28398311
+ 316
+ 319
+
+
+
+
+
+ Petit III& ReadR. A.
+
+ Bactopia: a flexible pipeline for complete analysis of bacterial genomes
+
+ American Society for Microbiology
+ 2020
+ 2379-5077
+ 10.1128/mSystems.00190-20
+
+
+
+
+
+ ChenShifu
+ ZhouYanqing
+ ChenYaru
+ GuJia
+
+ fastp: an ultra-fast all-in-one FASTQ preprocessor
+
+ Oxford Academic
+ 201809
+ 34
+ 17
+ 1367-4803
+ https://academic.oup.com/bioinformatics/article/34/17/i884/5093234
+ 10.1093/BIOINFORMATICS/BTY560
+ 30423086
+ i884
+ i890
+
+
+
+
+
+ PrjibelskiAndrey
+ AntipovDmitry
+ MeleshkoDmitry
+ LapidusAlla
+ KorobeynikovAnton
+
+ Using SPAdes De Novo Assembler
+
+ John Wiley & Sons, Ltd
+ 202006
+ 70
+ 1
+ 1934-340X
+ https://onlinelibrary.wiley.com/doi/full/10.1002/cpbi.102 https://onlinelibrary.wiley.com/doi/abs/10.1002/cpbi.102 https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/cpbi.102
+ 10.1002/CPBI.102
+ 32559359
+ e102
+
+
+
+
+
+
+ WickRyan R.
+ JuddLouise M.
+ GorrieClaire L.
+ HoltKathryn E.
+
+ Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads
+
+ Public Library of Science
+ 201706
+ 13
+ 6
+ 1553-7358
+ https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005595
+ 10.1371/JOURNAL.PCBI.1005595
+ 28594827
+ e1005595
+
+
+
+
+
+
+ WoodDerrick E.
+ LuJennifer
+ LangmeadBen
+
+ Improved metagenomic analysis with Kraken 2
+
+ BioMed Central Ltd.
+ 201911
+ 20
+ 1
+ https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1891-0
+ 10.1186/S13059-019-1891-0
+ 31779668
+ 1
+ 13
+
+
+
+
+
+ LuJennifer
+ RinconNatalia
+ WoodDerrick E.
+ BreitwieserFlorian P.
+ PockrandtChristopher
+ LangmeadBen
+ SalzbergSteven L.
+ SteineggerMartin
+
+ Metagenome analysis using the Kraken software suite
+
+ NIH Public Access
+ 202212
+ 17
+ 12
+ /pmc/articles/PMC9725748/ /pmc/articles/PMC9725748/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9725748/
+ 10.1038/S41596-022-00738-Y
+ 36171387
+ 2815
+
+
+
+
+
+
+ GurevichAlexey
+ SavelievVladislav
+ VyahhiNikolay
+ TeslerGlenn
+
+ QUAST: quality assessment tool for genome assemblies
+
+ Oxford Academic
+ 201304
+ 29
+ 8
+ 1367-4803
+ https://academic.oup.com/bioinformatics/article/29/8/1072/228832
+ 10.1093/BIOINFORMATICS/BTT086
+ 23422339
+ 1072
+ 1075
+
+
+
+
+
+ ManniMosè
+ BerkeleyMatthew R.
+ SeppeyMathieu
+ SimãoFelipe A.
+ ZdobnovEvgeny M.
+
+ BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes
+
+ Oxford Academic
+ 202109
+ 38
+ 10
+ https://academic.oup.com/mbe/article/38/10/4647/6329644
+ 10.1093/MOLBEV/MSAB199
+ 34320186
+ 4647
+ 4654
+
+
+
+
+
+ SeemannTorsten
+
+ MLST
+ 2022
+ https://github.com/tseemann/mlst
+
+
+
+
+
+ CarattoliAlessandra
+ ZankariEa
+ Garciá-FernándezAurora
+ LarsenMette Voldby
+ LundOle
+ VillaLaura
+ AarestrupFrank Mløler
+ HasmanHenrik
+
+ In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing
+
+ Antimicrob Agents Chemother
+ 2014
+ 58
+ 7
+ 1098-6596
+ https://pubmed.ncbi.nlm.nih.gov/24777092/
+ 10.1128/AAC.02412-14
+ 24777092
+ 3895
+ 3903
+
+
+
+
+
+ SchwengersOliver
+ BarthPatrick
+ FalgenhauerLinda
+ HainTorsten
+ ChakrabortyTrinad
+ GoesmannAlexander
+
+ Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores
+
+ Microb Genom
+ 2020
+ 6
+ 10
+ 2057-5858
+ https://pubmed.ncbi.nlm.nih.gov/32579097/
+ 10.1099/MGEN.0.000398
+ 32579097
+ 1
+ 12
+
+
+
+
+
+ AlcockBrian P
+ HuynhWilliam
+ ChalilRomeo
+ SmithKeaton W
+ RaphenyaAmogelang R
+ WlodarskiMateusz A
+ EdalatmandArman
+ PetkauAaron
+ SyedSohaib A
+ TsangKara K
+ BakerSheridan J C
+ DaveMugdha
+ McCarthyMadeline C
+ MukiriKaryn M
+ NasirJalees A
+ GolbonBahar
+ ImtiazHamna
+ JiangXingjian
+ KaurKomal
+ KwongMegan
+ LiangZi Cheng
+ NiuKeyu C
+ ShanPrabakar
+ YangJasmine Y J
+ GrayKristen L
+ HoadGemma R
+ JiaBaofeng
+ BhandoTimsy
+ CarfraeLindsey A
+ FarhaMaya A
+ FrenchShawn
+ GordzevichRodion
+ RachwalskiKenneth
+ TuMegan M
+ BordeleauEmily
+ DooleyDamion
+ GriffithsEmma
+ ZubykHaley L
+ BrownEric D
+ MaguireFinlay
+ BeikoRobert G
+ HsiaoWilliam W L
+ BrinkmanFiona S L
+ Van DomselaarGary
+ McArthurAndrew G
+
+ CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database
+
+ Nucleic Acids Res
+ 202301
+ 51
+ D1
+ 1362-4962
+ https://pubmed.ncbi.nlm.nih.gov/36263822/
+ 10.1093/NAR/GKAC920
+ 36263822
+
+
+
+
+
+ FeldgardenMichael
+ BroverVyacheslav
+ Gonzalez-EscalonaNarjol
+ FryeJonathan G.
+ HaendigesJulie
+ HaftDaniel H.
+ HoffmannMaria
+ PettengillJames B.
+ PrasadArjun B.
+ TillmanGlenn E.
+ TysonGregory H.
+ KlimkeWilliam
+
+ AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence
+
+ Nature Publishing Group
+ 202106
+ 11
+ 1
+ 0123456789
+ 2045-2322
+ https://www.nature.com/articles/s41598-021-91456-0
+ 10.1038/s41598-021-91456-0
+ 34135355
+ 1
+ 9
+
+
+
+
+
+ SeemannTorsten
+
+ Prokka: rapid prokaryotic genome annotation
+
+ Oxford Academic
+ 201407
+ 30
+ 14
+ 1367-4803
+ https://academic.oup.com/bioinformatics/article/30/14/2068/2390517
+ 10.1093/BIOINFORMATICS/BTU153
+ 24642063
+ 2068
+ 2069
+
+
+
+
+
+ SchwengersOliver
+ JelonekLukas
+ DieckmannMarius Alfred
+ BeyversSebastian
+ BlomJochen
+ GoesmannAlexander
+
+ Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification
+
+ Microbiology Society
+ 2021
+ 7
+ 11
+ /pmc/articles/PMC8743544/ /pmc/articles/PMC8743544/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743544/
+ 10.1099/MGEN.0.000685
+ 34739369
+ 685
+
+
+
+
+
+
+ PageAndrew J.
+ CumminsCarla A.
+ HuntMartin
+ WongVanessa K.
+ ReuterSandra
+ HoldenMatthew T. G.
+ FookesMaria
+ FalushDaniel
+ KeaneJacqueline A.
+ ParkhillJulian
+
+ Roary: rapid large-scale prokaryote pan genome analysis
+
+ Oxford Academic
+ 201511
+ 31
+ 22
+ 1367-4803
+ https://academic.oup.com/bioinformatics/article/31/22/3691/240757
+ 10.1093/BIOINFORMATICS/BTV421
+ 26198102
+ 3691
+ 3693
+
+
+
+
+
diff --git a/joss.05397/10.21105.joss.05397.pdf b/joss.05397/10.21105.joss.05397.pdf
new file mode 100644
index 0000000000..9805612562
Binary files /dev/null and b/joss.05397/10.21105.joss.05397.pdf differ
diff --git a/joss.05397/media/baargin_flowchart_v2.jpg b/joss.05397/media/baargin_flowchart_v2.jpg
new file mode 100644
index 0000000000..0cc1f47a5b
Binary files /dev/null and b/joss.05397/media/baargin_flowchart_v2.jpg differ