diff --git a/content/en/docs/kubernetes/operator/troubleshooting/_index.md b/content/en/docs/kubernetes/operator/troubleshooting/_index.md new file mode 100644 index 000000000000..8349c7457f97 --- /dev/null +++ b/content/en/docs/kubernetes/operator/troubleshooting/_index.md @@ -0,0 +1,8 @@ +--- +title: Troubleshooting the OpenTelemetry Operator for Kubernetes +linkTitle: Troubleshooting +description: + Contains a collection of tips for troubleshooting various aspects of the + OpenTelemetry Kubernetes Operator. For example, what to do when the target + allocator isn't scraping metrics. +--- diff --git a/content/en/docs/kubernetes/operator/troubleshooting/automatic.md b/content/en/docs/kubernetes/operator/troubleshooting/automatic.md new file mode 100644 index 000000000000..123e8092d632 --- /dev/null +++ b/content/en/docs/kubernetes/operator/troubleshooting/automatic.md @@ -0,0 +1,179 @@ +--- +title: Auto-instrumentation +--- + +If you're using the [OpenTelemetry Operator](/docs/kubernetes/operator)'s +[auto-instrumentation](/docs/kubernetes/operator/automatic) capability and +you're not seeing any traces or metrics, then there are a few troubleshooting +steps that you can take to help you understand what’s going on and to get things +back on track. + +## Troubleshooting Steps + +### 1- Check installation status + +After installing the `Instrumentation` resource, make sure that it _actually_ +installed correctly by running this command: + +```shell +kubectl describe otelinst -n +``` + +Where `` is the namespace in which the `Instrumentation` resource is +deployed. + +Your output should look something like this: + +```yaml +Name: python-instrumentation +Namespace: application +Labels: app.kubernetes.io/managed-by=opentelemetry-operator +Annotations: instrumentation.opentelemetry.io/default-auto-instrumentation-apache-httpd-image: + ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-apache-httpd:1.0.3 + instrumentation.opentelemetry.io/default-auto-instrumentation-dotnet-image: + ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-dotnet:0.7.0 + instrumentation.opentelemetry.io/default-auto-instrumentation-go-image: + ghcr.io/open-telemetry/opentelemetry-go-instrumentation/autoinstrumentation-go:v0.2.1-alpha + instrumentation.opentelemetry.io/default-auto-instrumentation-java-image: + ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-java:1.26.0 + instrumentation.opentelemetry.io/default-auto-instrumentation-nodejs-image: + ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-nodejs:0.40.0 + instrumentation.opentelemetry.io/default-auto-instrumentation-python-image: + ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.39b0 +API Version: opentelemetry.io/v1alpha1 +Kind: Instrumentation +Metadata: + Creation Timestamp: 2023-07-28T03:42:12Z + Generation: 1 + Resource Version: 3385 + UID: 646661d5-a8fc-4b64-80b7-8587c9865f53 +Spec: +... + Exporter: + Endpoint: http://otel-collector-collector.opentelemetry.svc.cluster.local:4318 +... + Propagators: + tracecontext + baggage + Python: + Image: ghcr.io/open-telemetry/opentelemetry-operator/autoinstrumentation-python:0.39b0 + Resource Requirements: + Limits: + Cpu: 500m + Memory: 32Mi + Requests: + Cpu: 50m + Memory: 32Mi + Resource: + Sampler: +Events: +``` + +### 2- Check the OpenTelemetry Operator Logs + +Check the OpenTelemetry Operator logs for errors, by running this command: + +```shell +kubectl logs -l app.kubernetes.io/name=opentelemetry-operator --container manager -n opentelemetry-operator-system --follow +``` + +The logs should not show any errors related to auto-instrumentation errors. + +### 3- Check deployment order + +Order matters. The `Instrumentation` resource must be deployed before deploying +the corresponding `Deployment` resource(s) being auto-instrumented. + +Consider the following auto-instrumentation annotation snippet: + +```yaml +annotations: + instrumentation.opentelemetry.io/inject-python: 'true' +``` + +It tells the OpenTelemetry Operator to look for an `Instrumentation` resource in +the pod’s namespace. It also tells the Operator to inject Python +auto-instrumentation into the pod. + +When the pod starts up, the annotation tells the Operator to look for an +`Instrumentation` resource in the pod’s namespace, and to inject Python +auto-instrumentation into the pod. It adds an +[init-container](https://kubernetes.io/docs/concepts/workloads/pods/init-containers/) +to the application’s pod, called `opentelemetry-auto-instrumentation`, which is +then used to injects the auto-instrumentation into the app container. + +But if the `Instrumentation` resource isn’t present by the time the `Deployment` +is deployed, the `init-container` can’t be created. This means that if the +`Deployment` resource is deployed _before_ you deploy the `Instrumentation` +resource, the auto-instrumentation will fail to initialize. + +Check that the `opentelemetry-auto-instrumentation` `init-container` has started +up correctly (or has even started up at all), by running the following command: + +```shell +kubectl get events -n +``` + +Which should result in output that looks something like this: + +```text +53s Normal Created pod/py-otel-server-7f54bf4cbc-p8wmj Created container opentelemetry-auto-instrumentation +53s Normal Started pod/py-otel-server-7f54bf4cbc-p8wmj Started container opentelemetry-auto-instrumentation +``` + +If the output is missing `Created` and/or `Started` entries for +`opentelemetry-auto-instrumentation`, then it means that there is an issue with +your auto-instrumentation configuration. This can be the result of any of the +following: + +- The `Instrumentation` resource wasn’t installed (or wasn’t installed + properly). +- The `Instrumentation` resource was installed _after_ the application was + deployed. +- There’s an error in the auto-instrumentation annotation, or the annotation in + the wrong spot — see #4 below. + +You might also want to check the output of the events command for any errors, as +these might help point to your issue. + +### 4- Check the auto-instrumentation configuration + +You’ve added the auto-instrumentation annotation, but did you do it correctly? +Here are a couple of things to check for: + +- **Are you auto-instrumenting for the right language?** For example, did you + try to auto-instrument a Python application by adding a JavaScript + auto-instrumentation annotation instead? +- **Did you put the auto-instrumentation annotation in the right spot?** When + you’re defining a `Deployment` resource, there are two spots where you could + add annotations: `spec.metadata.annotations`, and + `spec.template.metadata.annotations`. The auto-instrumentation annotation + needs to be added to `spec.template.metadata.annotations`, otherwise _it won’t + work_. + +### 5- Check auto-instrumentation endpoint configuration + +The `spec.exporter.endpoint` configuration in the `Instrumentation` resource +allows you to define the destination for your telemetry data. If you omit it, it +defaults to `http://localhost:4317`. Unfortunately, that won’t send your output +anywhere useful. + +If you’re sending out your instrumentation to a [Collector](/docs/collector/), +the value of `spec.exporter.endpoint` should reference the name of your +Collector +[`Service`](https://kubernetes.io/docs/concepts/services-networking/service/). + +For example: `http://otel-collector.opentelemetry.svc.cluster.local:4318`. + +Where: + +- `otel-collector` is the name of the OTel Collector Kubernetes + [`Service`](https://kubernetes.io/docs/concepts/services-networking/service/) +- In addition, if the Collector is running in a different namespace, you must + append `opentelemetry.svc.cluster.local` to the Collector’s service name, + where `opentelemetry` is the namespace in which the Collector resides (it can + be any namespace of your choosing). + +Finally, make sure that you are using the right Collector port. Normally, you +can choose either `4317` (gRPC) or `4318` (HTTP); however, for +[Python auto-instrumentation, you can only use `4318`](/docs/kubernetes/operator/automatic/#python).