-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py
63 lines (58 loc) · 1.9 KB
/
knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
_base_ = 'knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py'
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_tiny_patch4_window7_224_20220308-f41b89d3.pth' # noqa
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
num_stages = 3
conv_kernel_size = 1
model = dict(
type='EncoderDecoder',
pretrained=checkpoint_file,
backbone=dict(
_delete_=True,
type='SwinTransformer',
embed_dims=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.3,
use_abs_pos_embed=False,
patch_norm=True,
out_indices=(0, 1, 2, 3)),
decode_head=dict(
kernel_generate_head=dict(in_channels=[96, 192, 384, 768])),
auxiliary_head=dict(in_channels=384))
optim_wrapper = dict(
_delete_=True,
type='OptimWrapper',
# modify learning rate following the official implementation of Swin Transformer # noqa
optimizer=dict(
type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.0005),
paramwise_cfg=dict(
custom_keys={
'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}),
clip_grad=dict(max_norm=1, norm_type=2))
# learning policy
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
end=1000),
dict(
type='MultiStepLR',
begin=1000,
end=80000,
milestones=[60000, 72000],
by_epoch=False,
)
]
# In K-Net implementation we use batch size 2 per GPU as default
train_dataloader = dict(batch_size=2, num_workers=2)
val_dataloader = dict(batch_size=1, num_workers=4)
test_dataloader = val_dataloader