From 96523b455b3993cf3aae1216e2b05c65ef0cb0e1 Mon Sep 17 00:00:00 2001 From: Yining Li Date: Tue, 25 Apr 2023 23:42:58 +0800 Subject: [PATCH 1/2] update repo list in README (#2301) --- README.md | 13 ++++++------- README_CN.md | 13 ++++++------- 2 files changed, 12 insertions(+), 14 deletions(-) diff --git a/README.md b/README.md index 951c4adf2e..c40b9cdc4c 100644 --- a/README.md +++ b/README.md @@ -342,21 +342,20 @@ This project is released under the [Apache 2.0 license](LICENSE). - [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models. - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. -- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. -- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. +- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark. +- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox. - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark. - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection. - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark. +- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark. - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox. - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark. - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark. -- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark. -- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark. - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark. - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark. -- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark. - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark. -- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox. -- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox. - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab Model Deployment Framework. +- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark. +- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. +- [Playground](https://github.com/open-mmlab/playground): A central hub for gathering and showcasing amazing projects built upon OpenMMLab. diff --git a/README_CN.md b/README_CN.md index 49a956cab9..519e9889da 100644 --- a/README_CN.md +++ b/README_CN.md @@ -339,24 +339,23 @@ MMPose 是一款由不同学校和公司共同贡献的开源项目。我们感 - [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库 - [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库 -- [MIM](https://github.com/open-mmlab/mim): OpenMMlab 项目、算法、模型的统一入口 -- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱 +- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab 深度学习预训练工具箱 +- [MMagic](https://github.com/open-mmlab/mmagic): OpenMMLab 新一代人工智能内容生成(AIGC)工具箱 - [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱 - [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台 - [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准 +- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台 - [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱 - [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包 - [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱 - [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准 -- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准 -- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准 - [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准 - [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱 -- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台 - [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准 -- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab 图像视频编辑工具箱 -- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱 - [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架 +- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准 +- [MIM](https://github.com/open-mmlab/mim): OpenMMlab 项目、算法、模型的统一入口 +- [Playground](https://github.com/open-mmlab/playground): 收集和展示 OpenMMLab 相关的前沿、有趣的社区项目 ## 欢迎加入 OpenMMLab 社区 From e221703e7a395bf169ee1a146a91af54ee7aa4f2 Mon Sep 17 00:00:00 2001 From: notplus Date: Wed, 17 May 2023 10:51:18 +0800 Subject: [PATCH 2/2] [Docs] update bbox_cs2xywh comments --- mmpose/structures/bbox/transforms.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mmpose/structures/bbox/transforms.py b/mmpose/structures/bbox/transforms.py index 027ac0717b..c0c8e73395 100644 --- a/mmpose/structures/bbox/transforms.py +++ b/mmpose/structures/bbox/transforms.py @@ -111,7 +111,7 @@ def bbox_xywh2cs(bbox: np.ndarray, def bbox_cs2xyxy(center: np.ndarray, scale: np.ndarray, padding: float = 1.) -> np.ndarray: - """Transform the bbox format from (center, scale) to (x,y,w,h). + """Transform the bbox format from (center, scale) to (x1,y1,x2,y2). Args: center (ndarray): BBox center (x, y) in shape (2,) or (n, 2) @@ -120,7 +120,7 @@ def bbox_cs2xyxy(center: np.ndarray, Default: 1.0 Returns: - ndarray[float32]: BBox (x, y, w, h) in shape (4, ) or (n, 4) + ndarray[float32]: BBox (x1, y1, x2, y2) in shape (4, ) or (n, 4) """ dim = center.ndim