diff --git a/mmhuman3d/core/visualization/visualize_smpl.py b/mmhuman3d/core/visualization/visualize_smpl.py index 09c0bfd8..253ef8af 100644 --- a/mmhuman3d/core/visualization/visualize_smpl.py +++ b/mmhuman3d/core/visualization/visualize_smpl.py @@ -1058,162 +1058,162 @@ def render_smpl( return None -def visualize_smpl_calibration( - K, - R, - T, - resolution, - **kwargs, -) -> None: - """Visualize a smpl mesh which has opencv calibration matrix defined in - screen.""" - assert K is not None, '`K` is required.' - assert resolution is not None, '`resolution`(h, w) is required.' - func = partial( - render_smpl, - projection='perspective', - convention='opencv', - orig_cam=None, - in_ndc=False) - for k in func.keywords.keys(): - if k in kwargs: - kwargs.pop(k) - return func(K=K, R=R, T=T, resolution=resolution, **kwargs) - - -def visualize_smpl_hmr(cam_transl, - bbox=None, - kp2d=None, - focal_length=5000, - det_width=224, - det_height=224, - bbox_format='xyxy', - **kwargs) -> None: - """Simplest way to visualize HMR or SPIN or Smplify pred smpl with origin - frames and predicted cameras.""" - if kp2d is not None: - bbox = convert_kp2d_to_bbox(kp2d, bbox_format=bbox_format) - Ks = convert_bbox_to_intrinsic(bbox, bbox_format=bbox_format) - K = torch.Tensor( - get_default_hmr_intrinsic( - focal_length=focal_length, - det_height=det_height, - det_width=det_width)) - func = partial( - render_smpl, - projection='perspective', - convention='opencv', - in_ndc=False, - K=None, - R=None, - orig_cam=None, - ) - if isinstance(cam_transl, np.ndarray): - cam_transl = torch.Tensor(cam_transl) - T = torch.cat([ - cam_transl[..., [1]], cam_transl[..., [2]], 2 * focal_length / - (det_width * cam_transl[..., [0]] + 1e-9) - ], -1) - for k in func.keywords.keys(): - if k in kwargs: - kwargs.pop(k) - return func(Ks=Ks, K=K, T=T, **kwargs) - - -def visualize_smpl_vibe(orig_cam=None, - pred_cam=None, - bbox=None, - output_path='sample.mp4', - resolution=None, - aspect_ratio=1.0, - bbox_scale_factor=1.25, - bbox_format='xyxy', - **kwargs) -> None: - """Simplest way to visualize pred smpl with origin frames and predicted - cameras.""" - assert resolution is not None - if pred_cam is not None and bbox is not None: - orig_cam = torch.Tensor( - convert_crop_cam_to_orig_img(pred_cam, bbox, resolution[1], - resolution[0], aspect_ratio, - bbox_scale_factor, bbox_format)) - assert orig_cam is not None, '`orig_cam` is required.' - - func = partial( - render_smpl, - projection='weakperspective', - convention='opencv', - in_ndc=True, - ) - for k in func.keywords.keys(): - if k in kwargs: - kwargs.pop(k) - return func( - orig_cam=orig_cam, - output_path=output_path, - resolution=resolution, - **kwargs) - - -def visualize_T_pose(num_frames, - body_model_config=None, - body_model=None, - orbit_speed=1.0, - **kwargs) -> None: - """Simplest way to visualize a sequence of T pose.""" - assert num_frames > 0, '`num_frames` is required.' - assert body_model_config is not None or body_model is not None - model_type = body_model_config[ - 'type'] if body_model_config is not None else body_model.name( - ).replace('-', '').lower() - if model_type == 'smpl': - poses = torch.zeros(num_frames, 72) - else: - poses = torch.zeros(num_frames, 165) - - func = partial( - render_smpl, - betas=None, - transl=None, - verts=None, - convention='pytorch3d', - projection='fovperspective', - K=None, - R=None, - T=None, - origin_frames=None) - for k in func.keywords.keys(): - if k in kwargs: - kwargs.pop(k) - return func( - poses=poses, - body_model_config=body_model_config, - body_model=body_model, - orbit_speed=orbit_speed, - **kwargs) - - -def visualize_smpl_pose(poses=None, verts=None, **kwargs) -> None: - """Simplest way to visualize a sequence of smpl pose. - - Cameras will focus on the center of smpl mesh. `orbit speed` is - recommended. - """ - assert (poses - is not None) or (verts - is not None), 'Pass either `poses` or `verts`.' - func = partial( - render_smpl, - convention='opencv', - projection='fovperspective', - K=None, - R=None, - T=None, - in_ndc=True, - origin_frames=None, - frame_list=None, - image_array=None) - for k in func.keywords.keys(): - if k in kwargs: - kwargs.pop(k) - return func(poses=poses, verts=verts, **kwargs) +# def visualize_smpl_calibration( +# K, +# R, +# T, +# resolution, +# **kwargs, +# ) -> None: +# """Visualize a smpl mesh which has opencv calibration matrix defined in +# screen.""" +# assert K is not None, '`K` is required.' +# assert resolution is not None, '`resolution`(h, w) is required.' +# func = partial( +# render_smpl, +# projection='perspective', +# convention='opencv', +# orig_cam=None, +# in_ndc=False) +# for k in func.keywords.keys(): +# if k in kwargs: +# kwargs.pop(k) +# return func(K=K, R=R, T=T, resolution=resolution, **kwargs) + + +# def visualize_smpl_hmr(cam_transl, +# bbox=None, +# kp2d=None, +# focal_length=5000, +# det_width=224, +# det_height=224, +# bbox_format='xyxy', +# **kwargs) -> None: +# """Simplest way to visualize HMR or SPIN or Smplify pred smpl with origin +# frames and predicted cameras.""" +# if kp2d is not None: +# bbox = convert_kp2d_to_bbox(kp2d, bbox_format=bbox_format) +# Ks = convert_bbox_to_intrinsic(bbox, bbox_format=bbox_format) +# K = torch.Tensor( +# get_default_hmr_intrinsic( +# focal_length=focal_length, +# det_height=det_height, +# det_width=det_width)) +# func = partial( +# render_smpl, +# projection='perspective', +# convention='opencv', +# in_ndc=False, +# K=None, +# R=None, +# orig_cam=None, +# ) +# if isinstance(cam_transl, np.ndarray): +# cam_transl = torch.Tensor(cam_transl) +# T = torch.cat([ +# cam_transl[..., [1]], cam_transl[..., [2]], 2 * focal_length / +# (det_width * cam_transl[..., [0]] + 1e-9) +# ], -1) +# for k in func.keywords.keys(): +# if k in kwargs: +# kwargs.pop(k) +# return func(Ks=Ks, K=K, T=T, **kwargs) + + +# def visualize_smpl_vibe(orig_cam=None, +# pred_cam=None, +# bbox=None, +# output_path='sample.mp4', +# resolution=None, +# aspect_ratio=1.0, +# bbox_scale_factor=1.25, +# bbox_format='xyxy', +# **kwargs) -> None: +# """Simplest way to visualize pred smpl with origin frames and predicted +# cameras.""" +# assert resolution is not None +# if pred_cam is not None and bbox is not None: +# orig_cam = torch.Tensor( +# convert_crop_cam_to_orig_img(pred_cam, bbox, resolution[1], +# resolution[0], aspect_ratio, +# bbox_scale_factor, bbox_format)) +# assert orig_cam is not None, '`orig_cam` is required.' + +# func = partial( +# render_smpl, +# projection='weakperspective', +# convention='opencv', +# in_ndc=True, +# ) +# for k in func.keywords.keys(): +# if k in kwargs: +# kwargs.pop(k) +# return func( +# orig_cam=orig_cam, +# output_path=output_path, +# resolution=resolution, +# **kwargs) + + +# def visualize_T_pose(num_frames, +# body_model_config=None, +# body_model=None, +# orbit_speed=1.0, +# **kwargs) -> None: +# """Simplest way to visualize a sequence of T pose.""" +# assert num_frames > 0, '`num_frames` is required.' +# assert body_model_config is not None or body_model is not None +# model_type = body_model_config[ +# 'type'] if body_model_config is not None else body_model.name( +# ).replace('-', '').lower() +# if model_type == 'smpl': +# poses = torch.zeros(num_frames, 72) +# else: +# poses = torch.zeros(num_frames, 165) + +# func = partial( +# render_smpl, +# betas=None, +# transl=None, +# verts=None, +# convention='pytorch3d', +# projection='fovperspective', +# K=None, +# R=None, +# T=None, +# origin_frames=None) +# for k in func.keywords.keys(): +# if k in kwargs: +# kwargs.pop(k) +# return func( +# poses=poses, +# body_model_config=body_model_config, +# body_model=body_model, +# orbit_speed=orbit_speed, +# **kwargs) + + +# def visualize_smpl_pose(poses=None, verts=None, **kwargs) -> None: +# """Simplest way to visualize a sequence of smpl pose. + +# Cameras will focus on the center of smpl mesh. `orbit speed` is +# recommended. +# """ +# assert (poses +# is not None) or (verts +# is not None), 'Pass either `poses` or `verts`.' +# func = partial( +# render_smpl, +# convention='opencv', +# projection='fovperspective', +# K=None, +# R=None, +# T=None, +# in_ndc=True, +# origin_frames=None, +# frame_list=None, +# image_array=None) +# for k in func.keywords.keys(): +# if k in kwargs: +# kwargs.pop(k) +# return func(poses=poses, verts=verts, **kwargs)