Visualization provides an intuitive explanation of the training and testing process of the deep learning model.
MMEngine provides Visualizer
to visualize and store the state and intermediate results of the model training and testing process, with the following features:
- It supports basic drawing interface and feature map visualization
- It enables recording training states (such as loss and lr), performance evaluation metrics, and visualization results to a specified or multiple backends, including local device, TensorBoard, and WandB.
- It can be used in any location in the code base.
Visualizer
provides drawing APIs for common objects such as detection bboxes, points, text, lines, circles, polygons, and binary masks.
These APIs have the following features:
- Can be called multiple times to achieve overlay drawing requirements.
- All support multiple input types such as Tensor, Numpy array, etc.
Typical usages are as follows.
- Draw detection bboxes, masks, text, etc.
import torch
import mmcv
from mmengine.visualization import Visualizer
# https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/en/_static/image/cat_and_dog.png
image = mmcv.imread('docs/en/_static/image/cat_and_dog.png',
channel_order='rgb')
visualizer = Visualizer(image=image)
# single bbox formatted as [xyxy]
visualizer.draw_bboxes(torch.tensor([72, 13, 179, 147]))
# draw multiple bboxes
visualizer.draw_bboxes(torch.tensor([[33, 120, 209, 220], [72, 13, 179, 147]]))
visualizer.show()
visualizer.set_image(image=image)
visualizer.draw_texts("cat and dog", torch.tensor([10, 20]))
visualizer.show()
You can also customize things like color and width using the parameters in each API.
visualizer.set_image(image=image)
visualizer.draw_bboxes(torch.tensor([72, 13, 179, 147]),
edge_colors='r',
line_widths=3)
visualizer.draw_bboxes(torch.tensor([[33, 120, 209, 220]]),line_styles='--')
visualizer.show()
- Overlay display
These APIs can be called multiple times to get an overlay result.
visualizer.set_image(image=image)
visualizer.draw_bboxes(torch.tensor([[33, 120, 209, 220], [72, 13, 179, 147]]))
visualizer.draw_texts("cat and dog",
torch.tensor([10, 20])).draw_circles(torch.tensor([40, 50]),
torch.tensor([20]))
visualizer.show()
Feature map visualization has many functions. Currently, we only support single feature map visualization.
@staticmethod
def draw_featmap(
# input format must be CHW
featmap: torch.Tensor,
# if image data is input at the same time,
# the feature map will be overlaid on the image
overlaid_image: Optional[np.ndarray] = None,
# strategy to reduce multiple channels into a single channel
channel_reduction: Optional[str] = 'squeeze_mean',
# topk feature maps to show
topk: int = 10,
# the layout when multiple channels are expanded into multiple images
arrangement: Tuple[int, int] = (5, 2),
# scale the feature map
resize_shape: Optional[tuple] = None,
# overlay ratio between input image and generated feature map
alpha: float = 0.5,
) -> np.ndarray:
The main features can be concluded as follows:
-
As the input Tensor usually includes multiple channels,
channel_reduction
can reduce them into a single channel and overlay the result to the image.squeeze_mean
reduces the input channel C into a single channel using the mean function, so the output dimension becomes (1, H, W)select_max
select the channel with the maximum activation, where 'activation' refers to the sum across spatial dimensions of a channel.None
indicates that no reduction is needed, which allows the user to select the top k feature maps with the highest activation degree through thetopk
parameter.
-
topk
is only valid when thechannel_reduction
isNone
. It selects the top k channels according to the activation degree and then displays them overlaid with the image. The display layout can be specified using the--arrangement
parameter.- If
topk
is not -1,topk
channels with the largest activation will be selected for display. - If
topk
is -1, channel number C must be either 1 or 3 to indicate if the input is a picture. Otherwise, an error will be raised to prompt the user to reduce the channel withchannel_reduction
.
- If
-
Considering that the input feature map is usually very small, the function can upsample the feature map through
resize_shape
before the visualization.
For example, we would like to get the feature map from the layer4 output of a pre-trained ResNet18 model and visualize it.
- Reduce the multi-channel feature map into a single channel using
select_max
and display it.
import numpy as np
from torchvision.models import resnet18
from torchvision.transforms import Compose, Normalize, ToTensor
def preprocess_image(img, mean, std):
preprocessing = Compose([
ToTensor(),
Normalize(mean=mean, std=std)
])
return preprocessing(img.copy()).unsqueeze(0)
model = resnet18(pretrained=True)
def _forward(x):
x = model.conv1(x)
x = model.bn1(x)
x = model.relu(x)
x = model.maxpool(x)
x1 = model.layer1(x)
x2 = model.layer2(x1)
x3 = model.layer3(x2)
x4 = model.layer4(x3)
return x4
model.forward = _forward
image_norm = np.float32(image) / 255
input_tensor = preprocess_image(image_norm,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
feat = model(input_tensor)[0]
visualizer = Visualizer()
drawn_img = visualizer.draw_featmap(feat, channel_reduction='select_max')
visualizer.show(drawn_img)
Since the output feat feature map size is 7x7, the visualization effect is not good if we directly work on it. Users can scale the feature map by overlaying the input image or the resize_shape
parameter. If the size of the incoming image is not the same as the size of the feature map, the feature map will be forced to be resampled to the same spatial size as the input image.
drawn_img = visualizer.draw_featmap(feat, image, channel_reduction='select_max')
visualizer.show(drawn_img)
- Select the top five channels with the highest activation in the multi-channel feature map by setting
topk=5
, then format them into a 2x3 layout.
drawn_img = visualizer.draw_featmap(feat, image, channel_reduction=None,
topk=5, arrangement=(2, 3))
visualizer.show(drawn_img)
Users can set their own desired layout through arrangement
.
drawn_img = visualizer.draw_featmap(feat, image, channel_reduction=None,
topk=5, arrangement=(4, 2))
visualizer.show(drawn_img)
Once the drawing is completed, users can choose to display the result directly or save it to different backends. The backends currently supported by MMEngine include local storage, Tensorboard
and WandB
. The data supported include drawn pictures, scalars, and configurations.
- Save the result image
Suppose you want to save to your local device.
visualizer = Visualizer(image=image,
vis_backends=[dict(type='LocalVisBackend')],
save_dir='temp_dir')
visualizer.draw_bboxes(torch.tensor([[33, 120, 209, 220], [72, 13, 179, 147]]))
visualizer.draw_texts("cat and dog", torch.tensor([10, 20]))
visualizer.draw_circles(torch.tensor([40, 50]), torch.tensor([20]))
# temp_dir/vis_data/vis_image/demo_0.png will be generated
visualizer.add_image('demo', visualizer.get_image())
The zero in the result file name is used to distinguish different steps.
# temp_dir/vis_data/vis_image/demo_1.png will be generated
visualizer.add_image('demo', visualizer.get_image(), step=1)
# temp_dir/vis_data/vis_image/demo_3.png will be generated
visualizer.add_image('demo', visualizer.get_image(), step=3)
If you want to switch to other backends, you can change the configuration file like this:
# TensorboardVisBackend
visualizer = Visualizer(image=image,
vis_backends=[dict(type='TensorboardVisBackend')],
save_dir='temp_dir')
# WandbVisBackend
visualizer = Visualizer(image=image,
vis_backends=[dict(type='WandbVisBackend')],
save_dir='temp_dir')
- Store feature maps
visualizer = Visualizer(vis_backends=[dict(type='LocalVisBackend')],
save_dir='temp_dir')
drawn_img = visualizer.draw_featmap(feat, image, channel_reduction=None,
topk=5, arrangement=(2, 3))
# temp_dir/vis_data/vis_image/feat_0.png will be generated
visualizer.add_image('feat', drawn_img)
- Save scalar data such as loss
# temp_dir/vis_data/scalars.json will be generated
# save loss
visualizer.add_scalar('loss', 0.2, step=0)
visualizer.add_scalar('loss', 0.1, step=1)
# save acc
visualizer.add_scalar('acc', 0.7, step=0)
visualizer.add_scalar('acc', 0.8, step=1)
Multiple scalar data can also be saved at once.
# New contents will be added to the temp_dir/vis_data/scalars.json
visualizer.add_scalars({'loss': 0.3, 'acc': 0.8}, step=3)
- Save configurations
from mmengine import Config
cfg=Config.fromfile('tests/data/config/py_config/config.py')
# temp_dir/vis_data/config.py will be saved
visualizer.add_config(cfg)
Any Visualizer
can be configured with any number of storage backends. Visualizer
will loop through all the configured backends and save the results to each one.
visualizer = Visualizer(image=image,
vis_backends=[dict(type='TensorboardVisBackend'),
dict(type='LocalVisBackend')],
save_dir='temp_dir')
# temp_dir/vis_data/events.out.tfevents.xxx files will be generated
visualizer.draw_bboxes(torch.tensor([[33, 120, 209, 220], [72, 13, 179, 147]]))
visualizer.draw_texts("cat and dog", torch.tensor([10, 20]))
visualizer.draw_circles(torch.tensor([40, 50]), torch.tensor([20]))
visualizer.add_image('demo', visualizer.get_image())
Note: If there are multiple backends used at the same time, the name
field must be specified. Otherwise, it is impossible to distinguish which backend it is.
visualizer = Visualizer(
image=image,
vis_backends=[
dict(type='TensorboardVisBackend', name='tb_1', save_dir='temp_dir_1'),
dict(type='TensorboardVisBackend', name='tb_2', save_dir='temp_dir_2'),
dict(type='LocalVisBackend', name='local')
],
save_dir='temp_dir')
During the development, users may need to add visualization functions somewhere in their codes and save the results to different backends, which is very common for analysis and debugging. Visualizer
in MMEngine can obtain the data from the same visualizers and then visualize them.
Users only need to instantiate the visualizer through get_instance
during initialization. The visualizer obtained this way is unique and globally accessible. Then it can be accessed anywhere in the code through Visualizer.get_current_instance()
.
# call during the initialization stage
visualizer1 = Visualizer.get_instance(
name='vis',
vis_backends=[dict(type='LocalVisBackend')]
)
# call anywhere
visualizer2 = Visualizer.get_current_instance()
visualizer2.add_scalar('map', 0.7, step=0)
assert id(visualizer1) == id(visualizer2)
It can also be initialized globally through the config field.
from mmengine.registry import VISUALIZERS
visualizer_cfg = dict(type='Visualizer',
name='vis_new',
vis_backends=[dict(type='LocalVisBackend')])
VISUALIZERS.build(visualizer_cfg)
- Call a specific storage backend
The storage backend only provides basic functions such as saving configurations and scalars. However, users may want to utilize other powerful backend features like WandB and Tensorboard. Therefore, the storage backend provides the experiment
attribute to facilitate users to obtain backend objects and meet various customized functions.
For example, WandB provides an API to display tables. Users can obtain the WandB objects through the experiment
attribute and then call a specific API to save the data as a table to show.
visualizer = Visualizer(image=image,
vis_backends=[dict(type='WandbVisBackend')],
save_dir='temp_dir')
# get WandB object
wandb = visualizer.get_backend('WandbVisBackend').experiment
# add data to the table
table = wandb.Table(columns=["step", "mAP"])
table.add_data(1, 0.2)
table.add_data(2, 0.5)
table.add_data(3, 0.9)
# save
wandb.log({"table": table})
- Customize storage backends
Users only need to inherit BaseVisBackend
and implement various add_xx
methods to customize the storage backend easily.
from mmengine.registry import VISBACKENDS
from mmengine.visualization import BaseVisBackend
@VISBACKENDS.register_module()
class DemoVisBackend(BaseVisBackend):
def add_image(self, **kwargs):
pass
visualizer = Visualizer(vis_backends=[dict(type='DemoVisBackend')],
save_dir='temp_dir')
visualizer.add_image('demo',image)
- Customize visualizers
Similarly, users can easily customize the visualizer by inheriting Visualizer
and implementing the functions they want to override.
In most cases, users need to override add_datasample
. The data usually includes detection bboxes and instance masks from annotations or model predictions. This interface is for drawing datasample
data for various downstream libraries. Taking MMDetection as an example, the datasample
data usually includes labeled bboxs, labeled masks, predicted bboxs, or predicted masks. MMDetection will inherit Visualizer
and implement the add_datasample
interface, drawing the data related to the detection task.
from mmengine.registry import VISUALIZERS
@VISUALIZERS.register_module()
class DetLocalVisualizer(Visualizer):
def add_datasample(self,
name,
image: np.ndarray,
data_sample: Optional['BaseDataElement'] = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: int = 0,
step: int = 0) -> None:
pass
visualizer_cfg = dict(type='DetLocalVisualizer',
vis_backends=[dict(type='WandbVisBackend')],
name='visualizer')
# global initialize
VISUALIZERS.build(visualizer_cfg)
# call anywhere in your code
det_local_visualizer = Visualizer.get_current_instance()
det_local_visualizer.add_datasample('det', image, data_sample)